Search results
Results from the WOW.Com Content Network
[6] [8] Known as Canyon Diablo Troilite (CDT), the standard was established as having a 32 S: 34 S ratio of 22.220 and was used for around three decades. [6] In 1993, the International Atomic Energy Agency (IAEA) established a new standard, Vienna-CDT (VCDT), based on artificially prepared silver sulfide (IAEA-S-1) that was defined to have a δ ...
Darcy–Weisbach equation calculator; Pipe pressure drop calculator Archived 2019-07-13 at the Wayback Machine for single phase flows. Pipe pressure drop calculator for two phase flows. Archived 2019-07-13 at the Wayback Machine; Open source pipe pressure drop calculator. Web application with pressure drop calculations for pipes and ducts
In non ideal fluid dynamics, the Hagen–Poiseuille equation, also known as the Hagen–Poiseuille law, Poiseuille law or Poiseuille equation, is a physical law that gives the pressure drop in an incompressible and Newtonian fluid in laminar flow flowing through a long cylindrical pipe of constant cross section.
To calculate the pressure drop in a given reactor, the following equation may be deduced: = + | |. This arrangement of the Ergun equation makes clear its close relationship to the simpler Kozeny-Carman equation, which describes laminar flow of fluids across packed beds via the first term on the right hand side.
The Kozeny–Carman equation (or Carman–Kozeny equation or Kozeny equation) is a relation used in the field of fluid dynamics to calculate the pressure drop of a fluid flowing through a packed bed of solids. It is named after Josef Kozeny and Philip C. Carman.
In fluid dynamics, Sauter mean diameter (SMD) is an average measure of particle size.It was originally developed by German scientist Josef Sauter in the late 1920s. [1] [2] It is defined as the diameter of a sphere that has the same volume/surface area ratio as a particle of interest.
The strain hardening exponent (also called the strain hardening index), usually denoted , is a measured parameter that quantifies the ability of a material to become stronger due to strain hardening.
The lines always slope and start from top-left to bottom-right. For a structure receiving a very homogeneous dose (100% of the volume receiving exactly 10 Gy, for example) the cumulative DVH will appear as a horizontal line at the top of the graph, at 100% volume as plotted vertically, with a vertical drop at 10 Gy on the horizontal axis.