Search results
Results from the WOW.Com Content Network
The elastic properties can be well-characterized by the Young's modulus, Poisson's ratio, Bulk modulus, and Shear modulus or they may be described by the Lamé parameters. Young's modulus [ edit ]
Young's modulus is defined as the ratio of the stress (force per unit area) applied to the object and the resulting axial strain (displacement or deformation) in the linear elastic region of the material. Although Young's modulus is named after the 19th-century British scientist Thomas Young, the concept was developed in 1727 by Leonhard Euler.
Here ν is Poisson's ratio, E is Young's modulus, n is a unit vector directed along the direction of extension, m is a unit vector directed perpendicular to the direction of extension. Poisson's ratio has a different number of special directions depending on the type of anisotropy. [11] [12]
Isotropic elastic properties can be found by IET using the above described empirical formulas for the Young's modulus E, the shear modulus G and Poisson's ratio v. For isotropic materials the relation between strains and stresses in any point of flat sheets is given by the flexibility matrix [S] in the following expression:
The bulk modulus is an extension of Young's modulus to three dimensions. Flexural modulus ( E flex ) describes the object's tendency to flex when acted upon by a moment . Two other elastic moduli are Lamé's first parameter , λ, and P-wave modulus , M , as used in table of modulus comparisons given below references.
The plate elastic thickness (usually referred to as effective elastic thickness of the lithosphere). The elastic properties of the plate; The applied load or force; As flexural rigidity of the plate is determined by the Young's modulus, Poisson's ratio and cube of the plate's elastic thickness, it is a governing factor in both (1) and (2).
Young's modulus: pascal (Pa) or newton per square meter (N/m 2) eccentricity: unitless Euler's number (2.71828, base of the natural logarithm) unitless electron: unitless elementary charge: coulomb (C) force: newton (N) Faraday constant: coulombs per mole (C⋅mol −1) frequency
The aggregate modulus can be calculated from Young's modulus (E) and the Poisson ratio (v). [1] [2] = (+) The aggregate modulus of a similar specimen is determined from a unidirectional deformational testing configuration, i.e., the only non-zero strain component is E 11. [3]