Search results
Results from the WOW.Com Content Network
Qalculate! supports common mathematical functions and operations, multiple bases, autocompletion, complex numbers, infinite numbers, arrays and matrices, variables, mathematical and physical constants, user-defined functions, symbolic derivation and integration, solving of equations involving unknowns, uncertainty propagation using interval arithmetic, plotting using Gnuplot, unit and currency ...
Sometimes, the term "unit interval" is used to refer to objects that play a role in various branches of mathematics analogous to the role that [0,1] plays in homotopy theory. For example, in the theory of quivers , the (analogue of the) unit interval is the graph whose vertex set is { 0 , 1 } {\displaystyle \{0,1\}} and which contains a single ...
The main objective of interval arithmetic is to provide a simple way of calculating upper and lower bounds of a function's range in one or more variables. These endpoints are not necessarily the true supremum or infimum of a range since the precise calculation of those values can be difficult or impossible; the bounds only need to contain the function's range as a subset.
The two coincide in fact in NRZ transmission; they do not coincide in a 2B1Q transmission, where one pulse takes the time of two bits. For example, in a serial line with a baud rate of 2.5 Gbit/s, a unit interval is 1/(2.5 Gbit/s) = 0.4 ns/baud.
The identity element of this algebra is the condensed interval [1, 1]. If interval [x, y] is not in one of the ideals, then it has multiplicative inverse [1/x, 1/y]. Endowed with the usual topology, the algebra of intervals forms a topological ring. The group of units of this ring consists of four quadrants determined by the axes, or ideals in ...
For n independent and identically distributed discrete random variables X 1, X 2, ..., X n with cumulative distribution function G(x) and probability mass function g(x) the range of the X i is the range of a sample of size n from a population with distribution function G(x).
An indifference graph, formed from a set of points on the real line by connecting pairs of points whose distance is at most one. In graph theory, a branch of mathematics, an indifference graph is an undirected graph constructed by assigning a real number to each vertex and connecting two vertices by an edge when their numbers are within one unit of each other. [1]
A probability measure mapping the σ-algebra for events to the unit interval. The requirements for a set function μ {\displaystyle \mu } to be a probability measure on a σ-algebra are that: μ {\displaystyle \mu } must return results in the unit interval [ 0 , 1 ] , {\displaystyle [0,1],} returning 0 {\displaystyle 0} for the empty set and 1 ...