Search results
Results from the WOW.Com Content Network
In geometry, an arrangement of lines is the subdivision of the Euclidean plane formed by a finite set of lines. An arrangement consists of bounded and unbounded convex polygons , the cells of the arrangement, line segments and rays , the edges of the arrangement, and points where two or more lines cross, the vertices of the arrangement.
Configurations (4 3 6 2) (a complete quadrangle, at left) and (6 2 4 3) (a complete quadrilateral, at right).. In mathematics, specifically projective geometry, a configuration in the plane consists of a finite set of points, and a finite arrangement of lines, such that each point is incident to the same number of lines and each line is incident to the same number of points.
The three possible plane-line relationships in three dimensions. (Shown in each case is only a portion of the plane, which extends infinitely far.) In analytic geometry, the intersection of a line and a plane in three-dimensional space can be the empty set, a point, or a line. It is the entire line if that line is embedded in the plane, and is ...
Line arrangements. In discrete geometry, an arrangement is the decomposition of the d-dimensional linear, affine, or projective space into connected cells of different dimensions, induced by a finite collection of geometric objects, which are usually of dimension one less than the dimension of the space, and often of the same type as each other, such as hyperplanes or spheres.
As any line in this extension of σ corresponds to a plane through O, and since any pair of such planes intersects in a line through O, one can conclude that any pair of lines in the extension intersect: the point of intersection lies where the plane intersection meets σ or the line at infinity. Thus the axiom of projective geometry, requiring ...
The four-velocity at any point of world line () is defined as: = where is the four-position and is the proper time. [ 1 ] The four-velocity defined here using the proper time of an object does not exist for world lines for massless objects such as photons travelling at the speed of light; nor is it defined for tachyonic world lines, where the ...
Given two points of interest, finding the midpoint of the line segment they determine can be accomplished by a compass and straightedge construction.The midpoint of a line segment, embedded in a plane, can be located by first constructing a lens using circular arcs of equal (and large enough) radii centered at the two endpoints, then connecting the cusps of the lens (the two points where the ...
The complex plane is two-dimensional when considered to be formed from real-number coordinates, but one-dimensional in terms of complex-number coordinates. A two-dimensional complex space – such as the two-dimensional complex coordinate space , the complex projective plane , or a complex surface – has two complex dimensions, which can ...