Search results
Results from the WOW.Com Content Network
Logarithmic differentiation is a technique which uses logarithms and its differentiation rules to simplify certain expressions before actually applying the derivative. [ citation needed ] Logarithms can be used to remove exponents, convert products into sums, and convert division into subtraction — each of which may lead to a simplified ...
v. t. e. In mathematics, the derivative is a fundamental tool that quantifies the sensitivity of change of a function 's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.
f ′ (x) A function f of x, differentiated once in Lagrange's notation. One of the most common modern notations for differentiation is named after Joseph Louis Lagrange, even though it was actually invented by Euler and just popularized by the former. In Lagrange's notation, a prime mark denotes a derivative.
For a full list of editing commands, see Help:Wikitext. For including parser functions, variables and behavior switches, see Help:Magic words. For a guide to displaying mathematical equations and formulas, see Help:Displaying a formula. For a guide to editing, see Wikipedia:Contributing to Wikipedia. For an overview of commonly used style ...
Numerical differentiation. Use of numerical analysis to estimate derivatives of functions. Finite difference estimation of derivative. In numerical analysis, numerical differentiation algorithms estimate the derivative of a mathematical function or function subroutine using values of the function and perhaps other knowledge about the function.
Parametric derivative. In calculus, a parametric derivative is a derivative of a dependent variable with respect to another dependent variable that is taken when both variables depend on an independent third variable, usually thought of as "time" (that is, when the dependent variables are x and y and are given by parametric equations in t).
The utility of the Feynman subscript notation lies in its use in the derivation of vector and tensor derivative identities, as in the following example which uses the algebraic identity C ⋅ (A × B) = (C × A)⋅ B: An alternative method is to use the Cartesian components of the del operator as follows:
e. In calculus, the differential represents the principal part of the change in a function with respect to changes in the independent variable. The differential is defined by where is the derivative of f with respect to , and is an additional real variable (so that is a function of and ). The notation is such that the equation.