Search results
Results from the WOW.Com Content Network
XGBoost. XGBoost[2] (eXtreme Gradient Boosting) is an open-source software library which provides a regularizing gradient boosting framework for C++, Java, Python, [3] R, [4] Julia, [5] Perl, [6] and Scala. It works on Linux, Microsoft Windows, [7] and macOS. [8] From the project description, it aims to provide a "Scalable, Portable and ...
LightGBM, short for Light Gradient-Boosting Machine, is a free and open-source distributed gradient-boosting framework for machine learning, originally developed by Microsoft. [4][5] It is based on decision tree algorithms and used for ranking, classification and other machine learning tasks. The development focus is on performance and scalability.
Machine learningand data mining. In machine learning (ML), boosting is an ensemble metaheuristic for primarily reducing bias (as opposed to variance). [1] It can also improve the stability and accuracy of ML classification and regression algorithms. Hence, it is prevalent in supervised learning for converting weak learners to strong learners.
Gradient boosting is a machine learning technique based on boosting in a functional space, where the target is pseudo-residuals instead of residuals as in traditional boosting. It gives a prediction model in the form of an ensemble of weak prediction models, i.e., models that make very few assumptions about the data, which are typically simple ...
A receiver operating characteristic curve, or ROC curve, is a graphical plot that illustrates the performance of a binary classifier model (can be used for multi class classification as well) at varying threshold values. The ROC curve is the plot of the true positive rate (TPR) against the false positive rate (FPR) at each threshold setting.
Ensemble learning trains two or more machine learning algorithms on a specific classification or regression task. The algorithms within the ensemble model are generally referred as "base models", "base learners", or "weak learners" in literature. These base models can be constructed using a single modelling algorithm, or several different ...
Smile contains k-means and various more other algorithms and results visualization (for java, kotlin and scala). Julia contains a k-means implementation in the JuliaStats Clustering package. KNIME contains nodes for k-means and k-medoids. Mahout contains a MapReduce based k-means. mlpack contains a C++ implementation of k-means. Octave contains ...
A hyperparameter is a parameter whose value is used to control the learning process, which must be configured before the process starts. [2] Hyperparameter optimization determines the set of hyperparameters that yields an optimal model which minimizes a predefined loss function on a given data set. [3] The objective function takes a set of ...