Search results
Results from the WOW.Com Content Network
A higher expansion rate would imply a smaller characteristic size of CMB fluctuations, and vice versa. The Planck collaboration measured the expansion rate this way and determined H 0 = 67.4 ± 0.5 (km/s)/Mpc. [30] There is a disagreement between this measurement and the supernova-based measurements, known as the Hubble tension.
[13] [14] [15] Combining Slipher's velocities with Henrietta Swan Leavitt's intergalactic distance calculations and methodology allowed Hubble to better calculate an expansion rate for the universe. [16] Hubble's law is considered the first observational basis for the expansion of the universe, and is one of the pieces of evidence most often ...
The universe's expansion rate, a figure called the Hubble constant, is measured in kilometers per second per megaparsec, a distance equal to 3.26 million light-years.
[35] [36] [37] Another type of model, the backreaction conjecture, [38] [39] was proposed by cosmologist Syksy Räsänen: [40] the rate of expansion is not homogenous, but Earth is in a region where expansion is faster than the background. Inhomogeneities in the early universe cause the formation of walls and bubbles, where the inside of a ...
New measurements from the Hubble telescope suggest the universe is expanding between five and nine percent faster than scientists initially thought. NASA and the ESA measured the distance to stars ...
the accelerating expansion of the universe observed in the light from distant galaxies and supernovae. The model assumes that general relativity is the correct theory of gravity on cosmological scales.
Here is the Hubble parameter, a measure of the rate at which the universe is expanding. ρ {\displaystyle \rho } is the total density of mass and energy in the universe, a {\displaystyle a} is the scale factor (essentially the 'size' of the universe), and k {\displaystyle k} is the curvature parameter — that is, a measure of how curved ...
The 100-inch (2.5 m) Hooker telescope at Mount Wilson Observatory that Hubble used to measure galaxy distances and a value for the rate of expansion of the universe. Edwin Hubble's arrival at Mount Wilson Observatory, California, in 1919 coincided roughly with the completion of the 100-inch (2.5 m) Hooker Telescope, then