Search results
Results from the WOW.Com Content Network
In chemistry, the lattice energy is the energy change upon formation of one mole of a crystalline ionic compound from its constituent ions, which are assumed to initially be in the gaseous state. It is a measure of the cohesive forces that bind ionic solids.
Water is the chemical substance with chemical formula H 2 O; one molecule of water has two hydrogen atoms covalently bonded to a single oxygen atom. [26] Water is a tasteless, odorless liquid at ambient temperature and pressure. Liquid water has weak absorption bands at wavelengths of around 750 nm which cause it to appear to have a blue color. [4]
Photosynthetic cells use the sun's energy to split off water's hydrogen from oxygen. [107] In the presence of sunlight, hydrogen is combined with CO 2 (absorbed from air or water) to form glucose and release oxygen. [108] All living cells use such fuels and oxidize the hydrogen and carbon to capture the sun's energy and reform water and CO
A force field is the collection of parameters to describe the physical interactions between atoms or physical units (up to ~10 8) using a given energy expression. The term force field characterizes the collection of parameters for a given interatomic potential (energy function) and is often used within the computational chemistry community. [ 50 ]
Oxygen is more electronegative than carbon and hydrogen, [13] causing a partial negative (δ-) and positive charge (δ+) on the oxygen and remainder of the molecule, respectively. [ 3 ] [ 5 ] The δ- orienttowards the δ+ causing the acetone molecules to prefer to align in a few configurations in a δ- to δ+ orientation (pictured left).
In ionic compounds, the electronegativity of the two atoms bonding together has a major effect on their bond energy. [14] The extent of this effect is described by the compound's lattice energy, where a more negative lattice energy corresponds to a stronger force of attraction between the ions. Generally, greater differences in ...
A molecular vibration is a periodic motion of the atoms of a molecule relative to each other, such that the center of mass of the molecule remains unchanged. The typical vibrational frequencies range from less than 10 13 Hz to approximately 10 14 Hz, corresponding to wavenumbers of approximately 300 to 3000 cm −1 and wavelengths of approximately 30 to 3 μm.
The atomic binding energy of the atom is the energy required to disassemble an atom into free electrons and a nucleus. [4] It is the sum of the ionization energies of all the electrons belonging to a specific atom. The atomic binding energy derives from the electromagnetic interaction of the electrons with the nucleus, mediated by photons.