Search results
Results from the WOW.Com Content Network
Stan: A probabilistic programming language for Bayesian inference and optimization, Journal of Educational and Behavioral Statistics. Hoffman, Matthew D., Bob Carpenter, and Andrew Gelman (2012). Stan, scalable software for Bayesian modeling Archived 2015-01-21 at the Wayback Machine, Proceedings of the NIPS Workshop on Probabilistic Programming.
Stan (software) – open-source package for obtaining Bayesian inference using the No-U-Turn sampler, a variant of Hamiltonian Monte Carlo. It is somewhat like BUGS, but with a different language for expressing models and a different sampler for sampling from their posteriors; Statistical Lab – R-based and focusing on educational purposes
The inference process generates a posterior distribution, which has a central role in Bayesian statistics, together with other distributions like the posterior predictive distribution and the prior predictive distribution. The correct visualization, analysis, and interpretation of these distributions is key to properly answer the questions that ...
More recently, other languages to support Bayesian model specification and inference allow different or more efficient choices for the underlying Bayesian computation, and are accessible from the R data analysis and programming environment, e.g.: Stan, NIMBLE and NUTS. The influence of the BUGS language is evident in these later languages ...
Stan (software) – Stan is an open-source package for obtaining Bayesian inference using the No-U-Turn sampler (NUTS), [27] a variant of Hamiltonian Monte Carlo. PyMC – A Python library implementing an embedded domain specific language to represent bayesian networks, and a variety of samplers (including NUTS)
This is a comparison of statistical analysis software that allows doing inference with Gaussian processes often using approximations.. This article is written from the point of view of Bayesian statistics, which may use a terminology different from the one commonly used in kriging.
Engine for Likelihood-Free Inference. ELFI is a statistical software package written in Python for Approximate Bayesian Computation (ABC), also known e.g. as likelihood-free inference, simulator-based inference, approximative Bayesian inference etc. [83] ABCpy: Python package for ABC and other likelihood-free inference schemes.
Stan is a probabilistic programming language for statistical inference written in C++ ArviZ a Python library for exploratory analysis of Bayesian models Bambi is a high-level Bayesian model-building interface based on PyMC