Search results
Results from the WOW.Com Content Network
The energy used by human cells in an adult requires the hydrolysis of 100 to 150 mol/L of ATP daily, which means a human will typically use their body weight worth of ATP over the course of the day. [30] Each equivalent of ATP is recycled 1000–1500 times during a single day (150 / 0.1 = 1500), [29] at approximately 9×10 20 molecules/s. [29]
The chemical energy stored in ATP (the bond of its third phosphate group to the rest of the molecule can be broken allowing more stable products to form, thereby releasing energy for use by the cell) can then be used to drive processes requiring energy, including biosynthesis, locomotion or transportation of molecules across cell membranes.
Glycolysis is the metabolic pathway that converts glucose (C 6 H 12 O 6) into pyruvate and, in most organisms, occurs in the liquid part of cells (the cytosol). The free energy released in this process is used to form the high-energy molecules adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH). [1]
Phosphorylation is essential to the processes of both anaerobic and aerobic respiration, which involve the production of adenosine triphosphate (ATP), the "high-energy" exchange medium in the cell. During aerobic respiration, ATP is synthesized in the mitochondrion by addition of a third phosphate group to adenosine diphosphate (ADP) in a ...
A mitochondrion (pl. mitochondria) is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi.Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is used throughout the cell as a source of chemical energy. [2]
ATP synthase, also called complex V, is the final enzyme in the oxidative phosphorylation pathway. This enzyme is found in all forms of life and functions in the same way in both prokaryotes and eukaryotes. [67] The enzyme uses the energy stored in a proton gradient across a membrane to drive the synthesis of ATP from ADP and phosphate (P i).
The generation of ATP by chemiosmosis occurs in mitochondria and chloroplasts, as well as in most bacteria and archaea. For instance, in chloroplasts during photosynthesis, an electron transport chain pumps H + ions (protons) in the stroma (fluid) through the thylakoid membrane to the thylakoid spaces.
Plants use photosynthetic pathways to convert and store energy from sunlight, also conversion of ADP to ATP. [3] Animals use the energy released in the breakdown of glucose and other molecules to convert ADP to ATP, which can then be used to fuel necessary growth and cell maintenance. [2]