Search results
Results from the WOW.Com Content Network
The Shannon entropy (in nats) is: = = = and if entropy is measured in units of per nat, then the entropy is given by: = which is the Boltzmann entropy formula, where is the Boltzmann constant, which may be interpreted as the thermodynamic entropy per nat.
The von Neumann entropy formula is an extension of the Gibbs entropy formula to the quantum mechanical case. It has been shown [ 1 ] that the Gibbs Entropy is equal to the classical "heat engine" entropy characterized by d S = δ Q T {\displaystyle dS={\frac {\delta Q}{T}}\!} , and the generalized Boltzmann distribution is a sufficient and ...
Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension Temperature gradient: No standard symbol K⋅m −1: ΘL −1: Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer
Boltzmann's equation—carved on his gravestone. [1]In statistical mechanics, Boltzmann's equation (also known as the Boltzmann–Planck equation) is a probability equation relating the entropy, also written as , of an ideal gas to the multiplicity (commonly denoted as or ), the number of real microstates corresponding to the gas's macrostate:
There are multiple approaches to deriving the partition function. The following derivation follows the more powerful and general information-theoretic Jaynesian maximum entropy approach. According to the second law of thermodynamics, a system assumes a configuration of maximum entropy at thermodynamic equilibrium.
Specific enthalpy: h: J/kg Entropy: S: J/K Temperature T Specific entropy s: J/(kg K) Fugacity: f: N/m 2: Gibbs free energy: G: J Specific Gibbs free energy g: J/kg Gibbs free entropy: Ξ: J/K Grand / Landau potential: Ω: J Heat capacity (constant pressure) C p: J/K Specific heat capacity (constant pressure) c p
The connection between thermodynamic entropy and information entropy is given by Boltzmann's equation, which says that S = k B ln W. If we take the base-2 logarithm of W , it will yield the average number of questions we must ask about the microstate of the physical system in order to determine its macrostate.
As the entropy is a function of state the result is independent of the path. The above relation shows that the determination of the entropy requires knowledge of the heat capacity and the equation of state (which is the relation between P,V, and T of the substance involved). Normally these are complicated functions and numerical integration is ...