Search results
Results from the WOW.Com Content Network
The Shannon entropy (in nats) is: = = = and if entropy is measured in units of per nat, then the entropy is given by: = which is the Boltzmann entropy formula, where is the Boltzmann constant, which may be interpreted as the thermodynamic entropy per nat.
The von Neumann entropy formula is an extension of the Gibbs entropy formula to the quantum mechanical case. It has been shown [ 1 ] that the Gibbs Entropy is equal to the classical "heat engine" entropy characterized by d S = δ Q T {\displaystyle dS={\frac {\delta Q}{T}}\!} , and the generalized Boltzmann distribution is a sufficient and ...
Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension Temperature gradient: No standard symbol K⋅m −1: ΘL −1: Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer
There are multiple approaches to deriving the partition function. The following derivation follows the more powerful and general information-theoretic Jaynesian maximum entropy approach. According to the second law of thermodynamics, a system assumes a configuration of maximum entropy at thermodynamic equilibrium.
Boltzmann's entropy formula—carved on his gravestone. [1]In statistical mechanics, Boltzmann's entropy formula (also known as the Boltzmann–Planck equation, not to be confused with the more general Boltzmann equation, which is a partial differential equation) is a probability equation relating the entropy, also written as , of an ideal gas to the multiplicity (commonly denoted as or ), the ...
The entropy as a function only of extensive state variables is the one and only cardinal function of state for the generation of Massieu functions. It is not itself customarily designated a 'Massieu function', though rationally it might be thought of as such, corresponding to the term 'thermodynamic potential', which includes the internal energy.
Despite the foregoing, there is a difference between the two quantities. The information entropy Η can be calculated for any probability distribution (if the "message" is taken to be that the event i which had probability p i occurred, out of the space of the events possible), while the thermodynamic entropy S refers to thermodynamic probabilities p i specifically.
The connection between thermodynamic entropy and information entropy is given by Boltzmann's equation, which says that S = k B ln W. If we take the base-2 logarithm of W , it will yield the average number of questions we must ask about the microstate of the physical system in order to determine its macrostate.