Search results
Results from the WOW.Com Content Network
Perfect plasticity is a property of materials to undergo irreversible deformation without any increase in stresses or loads. Plastic materials that have been hardened by prior deformation, such as cold forming, may need increasingly higher stresses to deform further. Generally, plastic deformation is also dependent on the deformation speed, i.e ...
A material property is an intensive property of a material, i.e., a physical property or chemical property that does not depend on the amount of the material. These quantitative properties may be used as a metric by which the benefits of one material versus another can be compared, thereby aiding in materials selection. A property having a ...
Plasticity (physics), in engineering and physics, the propensity of a solid material to undergo permanent deformation under load; Behavioral plasticity, change in an organism's behavior in response to exposure to stimuli; Neuroplasticity, in neuroscience, how entire brain structures, and the brain itself, can change as a result of experience
An alternative approach is to add a strain rate dependence to the yield stress and use the techniques of rate independent plasticity to calculate the response of a material. [ 4 ] For metals and alloys , viscoplasticity is the macroscopic behavior caused by a mechanism linked to the movement of dislocations in grains , with superposed effects ...
A solid is a material that can support a substantial amount of shearing force over a given time scale during a natural or industrial process or action. This is what distinguishes solids from fluids, because fluids also support normal forces which are those forces that are directed perpendicular to the material plane across from which they act and normal stress is the normal force per unit area ...
When the stress state lies on the surface the material is said to have reached its yield point and the material is said to have become plastic. Further deformation of the material causes the stress state to remain on the yield surface, even though the shape and size of the surface may change as the plastic deformation evolves.
The equations that govern the deformation of jointed rocks are the same as those used to describe the motion of a continuum: [13] ˙ + = ˙ = = ˙: + = where (,) is the mass density, ˙ is the material time derivative of , (,) = ˙ (,) is the particle velocity, is the particle displacement, ˙ is the material time derivative of , (,) is the Cauchy stress tensor, (,) is the body force density ...
The exact mechanisms that control electroplasticity vary based on the material and the exact conditions (e.g., temperature, strain rate, grain size, etc.). Enhancing the plasticity of materials is of great practical interest as plastic deformation provides an efficient way of transforming raw materials into final products.