Search results
Results from the WOW.Com Content Network
This is a list of common physical constants and variables, and their notations. Note that bold text indicates that the quantity is a vector . Latin characters
Conjugate variables are pairs of variables mathematically defined in such a way that they become Fourier transform duals, [1] [2] or more generally are related through Pontryagin duality. The duality relations lead naturally to an uncertainty relation—in physics called the Heisenberg uncertainty principle —between them.
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
The concept of internal energy and its relationship to temperature. If a system has a definite temperature, then its total energy has three distinguishable components, termed kinetic energy (energy due to the motion of the system as a whole), potential energy (energy resulting from an externally imposed force field), and internal energy .
In this diagram, two particles come in with momenta p 1 and p 2, they interact in some fashion, and then two particles with different momentum (p 3 and p 4) leave.. In theoretical physics, the Mandelstam variables are numerical quantities that encode the energy, momentum, and angles of particles in a scattering process in a Lorentz-invariant fashion.
The flow in each bond is denoted by a pair of variables called power variables, akin to conjugate variables, whose product is the instantaneous power of the bond. The power variables are broken into two parts: flow and effort. For example, for the bond of an electrical system, the flow is the current, while the effort is the voltage.
m/s 5: L T −5: vector Current density: J →: Electric current per unit cross-section area A/m 2: L −2 I: conserved, intensive, vector Electric dipole moment: p: Measure of the separation of equal and opposite electric charges C⋅m L T I: vector Electric displacement field: D →: Strength of the electric displacement C/m 2: L −2 T I ...