Search results
Results from the WOW.Com Content Network
Iterative deepening prevents this loop and will reach the following nodes on the following depths, assuming it proceeds left-to-right as above: 0: A; 1: A, B, C, E (Iterative deepening has now seen C, when a conventional depth-first search did not.) 2: A, B, D, F, C, G, E, F (It still sees C, but that it came later.
Iterative deepening A* (IDA*) is a graph traversal and path search algorithm that can find the shortest path between a designated start node and any member of a set of goal nodes in a weighted graph. It is a variant of iterative deepening depth-first search that borrows the idea to use a heuristic function to conservatively estimate the ...
MTD(f) is an alpha-beta game tree search algorithm modified to use ‘zero-window’ initial search bounds, and memory (usually a transposition table) to reuse intermediate search results. MTD(f) is a shortened form of MTD(n,f) which stands for Memory-enhanced Test Driver with node ‘n’ and value ‘f’. [ 1 ]
For general graphs, replacing the stack of the iterative depth-first search implementation with a queue would also produce a breadth-first search algorithm, although a somewhat nonstandard one. [7] Another possible implementation of iterative depth-first search uses a stack of iterators of the list of neighbors of a node, instead of a stack of ...
Transposition tables that are too small can result in spending more time searching for non-existent entries due to threshing than the time saved by entries found. Many chess engines use pondering , searching to deeper levels on the opponent's time, similar to human beings, to increase their playing strength.
State space search is a process used in the field of computer science, including artificial intelligence (AI), in which successive configurations or states of an instance are considered, with the intention of finding a goal state with the desired property.
In computer science, tree traversal (also known as tree search and walking the tree) is a form of graph traversal and refers to the process of visiting (e.g. retrieving, updating, or deleting) each node in a tree data structure, exactly once.
The Floyd–Warshall algorithm is an example of dynamic programming, and was published in its currently recognized form by Robert Floyd in 1962. [3] However, it is essentially the same as algorithms previously published by Bernard Roy in 1959 [4] and also by Stephen Warshall in 1962 [5] for finding the transitive closure of a graph, [6] and is closely related to Kleene's algorithm (published ...