enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Least common multiple - Wikipedia

    en.wikipedia.org/wiki/Least_common_multiple

    Product = 2 × 2 × 2 × 2 × 3 × 2 × 2 × 3 × 3 × 5 = 8640. This also works for the greatest common divisor (gcd), except that instead of multiplying all of the numbers in the Venn diagram, one multiplies only the prime factors that are in the intersection. Thus the gcd of 48 and 180 is 2 × 2 × 3 = 12.

  3. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    Download as PDF; Printable version; ... The tables contain the prime factorization of the ... An even number has the prime factor 2. The first: 2, 4, 6, 8, 10 ...

  4. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    The greatest common divisor (GCD) of integers a and b, at least one of which is nonzero, is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer.

  5. Extended Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Extended_Euclidean_algorithm

    For example, if the polynomial used to define the finite field GF(2 8) is p = x 8 + x 4 + x 3 + x + 1, and a = x 6 + x 4 + x + 1 is the element whose inverse is desired, then performing the algorithm results in the computation described in the following table.

  6. Binary GCD algorithm - Wikipedia

    en.wikipedia.org/wiki/Binary_GCD_algorithm

    Visualisation of using the binary GCD algorithm to find the greatest common divisor (GCD) of 36 and 24. Thus, the GCD is 2 2 × 3 = 12.. The binary GCD algorithm, also known as Stein's algorithm or the binary Euclidean algorithm, [1] [2] is an algorithm that computes the greatest common divisor (GCD) of two nonnegative integers.

  7. Continued fraction - Wikipedia

    en.wikipedia.org/wiki/Continued_fraction...

    The story of continued fractions begins with the Euclidean algorithm, [4] a procedure for finding the greatest common divisor of two natural numbers m and n.That algorithm introduced the idea of dividing to extract a new remainder – and then dividing by the new remainder repeatedly.

  8. Cross-multiplication - Wikipedia

    en.wikipedia.org/wiki/Cross-multiplication

    The rule of three [1] was a historical shorthand version for a particular form of cross-multiplication that could be taught to students by rote. It was considered the height of Colonial maths education [2] and still figures in the French national curriculum for secondary education, [3] and in the primary education curriculum of Spain. [4]

  9. Coprime integers - Wikipedia

    en.wikipedia.org/wiki/Coprime_integers

    Furthermore, if b 1, b 2 are both coprime with a, then so is their product b 1 b 2 (i.e., modulo a it is a product of invertible elements, and therefore invertible); [6] this also follows from the first point by Euclid's lemma, which states that if a prime number p divides a product bc, then p divides at least one of the factors b, c.