Search results
Results from the WOW.Com Content Network
A positive void coefficient means that the reactivity increases as the void content inside the reactor increases due to increased boiling or loss of coolant; for example, if the coolant acts predominantly as neutron absorber. This positive void coefficient causes a positive feedback loop, starting with the first occurrence of steam bubbles ...
Certain aspects of the original RBMK reactor design had several shortcomings, [3] such as the large positive void coefficient, the 'positive scram effect' of the control rods [4] and instability at low power levels—which contributed to the 1986 Chernobyl disaster, in which an RBMK experienced an uncontrolled nuclear chain reaction, leading to ...
The reactor had a dangerously large positive void coefficient of reactivity. The void coefficient is a measurement of how a reactor responds to increased steam formation in the water coolant. Most other reactor designs have a negative coefficient, i.e. the nuclear reaction rate slows when steam bubbles form in the coolant, since as the steam ...
These so-called delayed neutrons increase the effective average lifetime of neutrons in the core, to nearly 0.1 seconds, so that a core with of 0.01 would increase in one second by only a factor of (1 + 0.01) 10, or about 1.1: a 10% increase. This is a controllable rate of change.
The total water loss combined with a high positive void coefficient further increased the reactor's thermal power. [ 21 ] A second, more powerful explosion occurred about two or three seconds after the first; this explosion dispersed the damaged core and effectively terminated the nuclear chain reaction .
This property is called the void coefficient of reactivity, and in an RBMK reactor like Chernobyl, the void coefficient is positive, and fairly large, making it very hard to regulate when the reaction begins to run away. The RBMK reactors also have a flawed control rods design in which during rapid scrams, the graphite reaction enhancement tips ...
Passive nuclear safety is a design approach for safety features, implemented in a nuclear reactor, that does not require any active intervention on the part of the operator or electrical/electronic feedback in order to bring the reactor to a safe shutdown state, in the event of a particular type of emergency (usually overheating resulting from a loss of coolant or loss of coolant flow).
The unsafe reactor design caused instability at low power due to a positive void coefficient and steam formation. When an improper test was conducted at 1:00 am at low power, the reactor became prompt critical .