enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convergence of random variables - Wikipedia

    en.wikipedia.org/.../Convergence_of_random_variables

    Proofs of convergence of random variables; Convergence of measures; Convergence in measure; Continuous stochastic process: the question of continuity of a stochastic process is essentially a question of convergence, and many of the same concepts and relationships used above apply to the continuity question. Asymptotic distribution

  3. Continuous mapping theorem - Wikipedia

    en.wikipedia.org/wiki/Continuous_mapping_theorem

    The continuous mapping theorem states that this will also be true if we replace the deterministic sequence {x n} with a sequence of random variables {X n}, and replace the standard notion of convergence of real numbers “→” with one of the types of convergence of random variables.

  4. Proofs of convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_convergence_of...

    So let f be such arbitrary bounded continuous function. Now consider the function of a single variable g(x) := f(x, c). This will obviously be also bounded and continuous, and therefore by the portmanteau lemma for sequence {X n} converging in distribution to X, we will have that E[g(X n)] → E[g(X)].

  5. Lévy's continuity theorem - Wikipedia

    en.wikipedia.org/wiki/Lévy's_continuity_theorem

    In probability theory, Lévy’s continuity theorem, or Lévy's convergence theorem, [1] named after the French mathematician Paul Lévy, connects convergence in distribution of the sequence of random variables with pointwise convergence of their characteristic functions.

  6. Doob's martingale convergence theorems - Wikipedia

    en.wikipedia.org/wiki/Doob's_martingale...

    It is important to note that the convergence in Doob's first martingale convergence theorem is pointwise, not uniform, and is unrelated to convergence in mean square, or indeed in any L p space. In order to obtain convergence in L 1 (i.e., convergence in mean), one requires uniform integrability of the random variables .

  7. Convergence of measures - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_measures

    For (,) a measurable space, a sequence μ n is said to converge setwise to a limit μ if = ()for every set .. Typical arrow notations are and .. For example, as a consequence of the Riemann–Lebesgue lemma, the sequence μ n of measures on the interval [−1, 1] given by μ n (dx) = (1 + sin(nx))dx converges setwise to Lebesgue measure, but it does not converge in total variation.

  8. Probability theory - Wikipedia

    en.wikipedia.org/wiki/Probability_theory

    A sequence of random variables ,, …, converges weakly to the random variable if their respective CDF converges,, … converges to the CDF of , wherever is continuous. Weak convergence is also called convergence in distribution.

  9. Scheffé's lemma - Wikipedia

    en.wikipedia.org/wiki/Scheffé's_lemma

    Applied to probability theory, Scheffe's theorem, in the form stated here, implies that almost everywhere pointwise convergence of the probability density functions of a sequence of -absolutely continuous random variables implies convergence in distribution of those random variables.