Search results
Results from the WOW.Com Content Network
The definition of convergence in distribution may be extended from random vectors to more general random elements in arbitrary metric spaces, and even to the “random variables” which are not measurable — a situation which occurs for example in the study of empirical processes. This is the “weak convergence of laws without laws being ...
This article is supplemental for “Convergence of random variables” and provides proofs for selected results. Several results will be established using the portmanteau lemma: A sequence {X n} converges in distribution to X if and only if any of the following conditions are met:
Uniform convergence in probability is a form of convergence in probability in statistical asymptotic theory and probability theory. It means that, under certain conditions, the empirical frequencies of all events in a certain event-family converge to their theoretical probabilities .
In probability theory, Slutsky's theorem extends some properties of algebraic operations on convergent sequences of real numbers to sequences of random variables. [1] The theorem was named after Eugen Slutsky. [2] Slutsky's theorem is also attributed to Harald Cramér. [3]
Let in the theorem denote a random variable that takes the values / and / with equal probabilities. With = the summands of the first two series are identically zero and var(Y n)=. The conditions of the theorem are then satisfied, so it follows that the harmonic series with random signs converges almost surely.
For (,) a measurable space, a sequence μ n is said to converge setwise to a limit μ if = ()for every set .. Typical arrow notations are and .. For example, as a consequence of the Riemann–Lebesgue lemma, the sequence μ n of measures on the interval [−1, 1] given by μ n (dx) = (1 + sin(nx))dx converges setwise to Lebesgue measure, but it does not converge in total variation.
Convergence in distribution-- pointwise convergence of the distribution functions of the random variables to the limit Convergence in probability Almost sure convergence -- pointwise convergence of the mappings x n : Ω → V {\displaystyle x_{n}:\Omega \rightarrow V} to the limit, except at a set in Ω {\displaystyle \Omega } with measure 0 in ...
A sequence of random variables ,, …, converges weakly to the random variable if their respective CDF converges,, … converges to the CDF of , wherever is continuous. Weak convergence is also called convergence in distribution .