Ads
related to: arithmetic sequence practice questions and solutions 6th edition 5thchegg.com has been visited by 100K+ users in the past month
- Used Textbooks
Used textbooks are the cheap
alternative to paying full price.
- Expert Q&A
Stay ahead with expert support
24/7 Expert support and tools
- E-Textbooks
Our eTextbooks are accessible on
any device with internet connection
- College Textbooks
Get college textbooks for cheap.
Don't spend hundreds of dollars.
- Used Textbooks
Search results
Results from the WOW.Com Content Network
For instance, the sequence 5, 7, 9, 11, 13, 15, . . . is an arithmetic progression with a common difference of 2. If the initial term of an arithmetic progression is a 1 {\displaystyle a_{1}} and the common difference of successive members is d {\displaystyle d} , then the n {\displaystyle n} -th term of the sequence ( a n {\displaystyle a_{n ...
The sequence of primes numbers contains arithmetic progressions of any length. This result was proven by Ben Green and Terence Tao in 2004 and is now known as the Green–Tao theorem. [3] See also Dirichlet's theorem on arithmetic progressions. As of 2020, the longest known arithmetic progression of primes has length 27: [4]
Recamán's sequence: 0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24, 8, 25, 43, 62, ... "subtract if possible, otherwise add": a(0) = 0; for n > 0, a(n) = a(n − 1) − n if that number is positive and not already in the sequence, otherwise a(n) = a(n − 1) + n, whether or not that number is already in the sequence. A005132: Look-and ...
The notion of an arithmetic progression makes sense in arbitrary -modules, but the construction of a topology on them relies on closure under intersection. Instead, the correct generalization builds a topology out of ideals of a Dedekind domain . [ 16 ]
For instance, 6 is an arithmetic number because the average of its divisors is + + + =, which is also an integer. However, 2 is not an arithmetic number because its only divisors are 1 and 2, and their average 3/2 is not an integer. The first numbers in the sequence of arithmetic numbers are
In number theory, primes in arithmetic progression are any sequence of at least three prime numbers that are consecutive terms in an arithmetic progression. An example is the sequence of primes (3, 7, 11), which is given by a n = 3 + 4 n {\displaystyle a_{n}=3+4n} for 0 ≤ n ≤ 2 {\displaystyle 0\leq n\leq 2} .
For example, the sequence,,,,, … is not an arithmetic progression, but is instead generated by starting with 17 and adding either 3 or 5, thus allowing multiple common differences to generate it. A semilinear set generalizes this idea to multiple dimensions – it is a set of vectors of integers, rather than a set of integers.
Roth's theorem on arithmetic progressions (infinite version): A subset of the natural numbers with positive upper density contains a 3-term arithmetic progression. An alternate, more qualitative, formulation of the theorem is concerned with the maximum size of a Salem–Spencer set which is a subset of [ N ] = { 1 , … , N } {\displaystyle [N ...
Ads
related to: arithmetic sequence practice questions and solutions 6th edition 5thchegg.com has been visited by 100K+ users in the past month