enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Coefficient of determination - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_determination

    Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).

  3. Pearson correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Pearson_correlation...

    Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.

  4. Standardized coefficient - Wikipedia

    en.wikipedia.org/wiki/Standardized_coefficient

    In statistics, standardized (regression) coefficients, also called beta coefficients or beta weights, are the estimates resulting from a regression analysis where the underlying data have been standardized so that the variances of dependent and independent variables are equal to 1. [1]

  5. Relationships among probability distributions - Wikipedia

    en.wikipedia.org/wiki/Relationships_among...

    More generally, if X 1 is a gamma(α 1, β 1) random variable and X 2 is an independent gamma(α 2, β 2) random variable then β 2 X 1 /(β 2 X 1 + β 1 X 2) is a beta1, α 2) random variable. If X and Y are independent exponential random variables with mean μ, then X − Y is a double exponential random variable with mean 0 and scale μ.

  6. Beta regression - Wikipedia

    en.wikipedia.org/wiki/Beta_regression

    Beta regression is a form of regression which is used when the response variable, , takes values within (,) and can be assumed to follow a beta distribution. [1] It is generalisable to variables which takes values in the arbitrary open interval ( a , b ) {\displaystyle (a,b)} through transformations. [ 1 ]

  7. Simple linear regression - Wikipedia

    en.wikipedia.org/wiki/Simple_linear_regression

    Under this assumption all formulas derived in the previous section remain valid, with the only exception that the quantile t* n−2 of Student's t distribution is replaced with the quantile q* of the standard normal distribution. Occasionally the fraction ⁠ 1 / n−2 ⁠ is replaced with ⁠ 1 / n ⁠.

  8. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    Linear regression can be used to estimate the values of β 1 and β 2 from the measured data. This model is non-linear in the time variable, but it is linear in the parameters β 1 and β 2 ; if we take regressors x i = ( x i 1 , x i 2 ) = ( t i , t i 2 ), the model takes on the standard form

  9. Effect size - Wikipedia

    en.wikipedia.org/wiki/Effect_size

    In statistics, an effect size is a value measuring the strength of the relationship between two variables in a population, or a sample-based estimate of that quantity. It can refer to the value of a statistic calculated from a sample of data, the value of one parameter for a hypothetical population, or to the equation that operationalizes how statistics or parameters lead to the effect size ...