Search results
Results from the WOW.Com Content Network
At such speeds, shock waves form in the air passing over the wings, drastically increasing the drag due to drag divergence, causing Mach buffet, or drastically changing the center of pressure, resulting in a nose-down moment called "mach tuck". The aircraft Mach number at which these effects appear is known as its critical Mach number, or M ...
Aircraft upset is an unacceptable condition, in aircraft operations, in which the aircraft flight attitude or airspeed is outside the normally intended limits. This may result in the loss of control (LOC) of the aircraft, and sometimes the total loss of the aircraft itself. [1]
Mach tuck occurred at speeds above Mach 0.65; [3] the air flow over the wing center section became transonic, causing a loss of lift. The resultant change in downwash at the tail caused a nose-down pitching moment and the dive to steepen (Mach tuck). The aircraft was very stable in this condition [3] making recovery from the dive very difficult.
The "diamonds" are actually a complex flow field made visible by abrupt changes in local density and pressure as the exhaust passes through a series of standing shock waves and expansion fans. The physicist Ernst Mach was the first to describe a strong shock normal to the direction of fluid flow, the presence of which causes the diamond pattern.
The sound barrier or sonic barrier is the large increase in aerodynamic drag and other undesirable effects experienced by an aircraft or other object when it approaches the speed of sound.
Jimmy Buffett‘s cause of death has been revealed. According to an obituary for the “Margaritaville” singer, he had been privately “fighting Merkel cell skin cancer for four years.”
Anne Scheiber never brought home more than $4,000 a year or received a promotion in her 23-year IRS career — but when she died at the age of 101, the former auditor had amassed a fortune of over ...
Transonic flow patterns on an aircraft wing, showing the effects at and above the critical Mach number. In aerodynamics, the critical Mach number (Mcr or M*) of an aircraft is the lowest Mach number at which the airflow over some point of the aircraft reaches the speed of sound, but does not exceed it. [1]