Search results
Results from the WOW.Com Content Network
In mathematics, the factorial of a non-negative integer, denoted by !, is the product of all positive integers less than or equal to . The factorial of also equals the product of with the next smaller factorial: ! = () = ()! For example, ! =! = =
The core of MFA is a weighted factorial analysis: MFA firstly provides the classical results of the factorial analyses. 1. Representations of individuals in which two individuals are close to each other if they exhibit similar values for many variables in the different variable groups; in practice the user particularly studies the first ...
function factorial (n is a non-negative integer) if n is 0 then return 1 [by the convention that 0! = 1] else if n is in lookup-table then return lookup-table-value-for-n else let x = factorial(n – 1) times n [recursively invoke factorial with the parameter 1 less than n] store x in lookup-table in the n th slot [remember the result of n! for ...
The factorial of a non-negative integer n, denoted by n!, is the product of all positive integers less than or equal to n. For example, 5! = 5×4×3×2×1 = 120. By convention, the value of 0! is defined as 1. This classical factorial function appears prominently in many theorems in number theory. The following are a few of these theorems. [1]
The factorial function, generalized to all complex numbers except negative integers. For example, 0! = 1! = 1, (−0.5)! = √π, (0.5)! = √π/2. Besides nonnegative integers, the factorial function can also be defined for non-integer values, but this requires more advanced tools from mathematical analysis.
This experiment is an example of a 2 2 (or 2×2) factorial experiment, so named because it considers two levels (the base) for each of two factors (the power or superscript), or #levels #factors, producing 2 2 =4 factorial points. Cube plot for factorial design . Designs can involve many independent variables.
The final expression is defined for all complex numbers except the negative even integers and satisfies (z + 2)!! = (z + 2) · z!! everywhere it is defined. As with the gamma function that extends the ordinary factorial function, this double factorial function is logarithmically convex in the sense of the Bohr–Mollerup theorem.
Its particular values can be expressed in closed form for integer and half-integer arguments, but no simple expressions are known for the values at rational points in general. Other fractional arguments can be approximated through efficient infinite products, infinite series, and recurrence relations.