Search results
Results from the WOW.Com Content Network
Diagram of a RAID 1 setup. RAID 1 consists of an exact copy (or mirror) of a set of data on two or more disks; a classic RAID 1 mirrored pair contains two disks.This configuration offers no parity, striping, or spanning of disk space across multiple disks, since the data is mirrored on all disks belonging to the array, and the array can only be as big as the smallest member disk.
A typical RAID 10 configuration. RAID 10, also called RAID 1+0 and sometimes RAID 1&0, is similar to RAID 01 with an exception that the two used standard RAID levels are layered in the opposite order; thus, RAID 10 is a stripe of mirrors.
Those RAID systems made their way to the consumer market, for users wanting the fault-tolerance of RAID without investing in expensive SCSI drives. Fast consumer drives make it possible to build RAID systems at lower cost than with SCSI, but most ATA RAID controllers lack a dedicated buffer or high-performance XOR hardware for parity calculation.
There is a difference between fault tolerance and systems that rarely have problems. For instance, the Western Electric crossbar systems had failure rates of two hours per forty years, and therefore were highly fault resistant. But when a fault did occur they still stopped operating completely, and therefore were not fault tolerant.
A flawed RAID 5/6 also exists, but can result in data loss.) [10] For RAID 1, the devices must have complementary sizes. For example, a filesystem spanning two 500 GB devices and one 1 TB device could provide RAID1 for all data, while a filesystem spanning a 1 TB device and a single 500 GB device could only provide RAID1 for 500 GB of data.
RAID 5E, RAID 5EE, and RAID 6E (with the added E standing for Enhanced) generally refer to variants of RAID 5 or 6 with an integrated hot-spare drive, where the spare drive is an active part of the block rotation scheme. This spreads I/O across all drives, including the spare, thus reducing the load on each drive, increasing performance.
RAID stands for redundant array of independent disks (or, formerly, redundant array of inexpensive disks). RAID levels may refer to: Standard RAID levels , all the RAID configurations defined in the Common RAID Disk Drive Format standard, which is maintained by the Storage Networking Industry Association
RAID (32 P) U. Uninterruptible power supply (7 P, 1 F) Pages in category "Fault-tolerant computer systems" The following 72 pages are in this category, out of 72 total.