enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Clearing denominators - Wikipedia

    en.wikipedia.org/wiki/Clearing_denominators

    The simplified equation is not entirely equivalent to the original. For when we substitute y = 0 and z = 0 in the last equation, both sides simplify to 0, so we get 0 = 0 , a mathematical truth. But the same substitution applied to the original equation results in x /6 + 0/0 = 1 , which is mathematically meaningless .

  3. Lentz's algorithm - Wikipedia

    en.wikipedia.org/wiki/Lentz's_algorithm

    This method was an improvement compared to other methods because it started from the beginning of the continued fraction rather than the tail, had a built-in check for convergence, and was numerically stable. The original algorithm uses algebra to bypass a zero in either the numerator or denominator. [5]

  4. Solving quadratic equations with continued fractions - Wikipedia

    en.wikipedia.org/wiki/Solving_quadratic...

    The rate of convergence depends on the absolute value of the ratio between the two roots: the farther that ratio is from unity, the more quickly the continued fraction converges. When the monic quadratic equation with real coefficients is of the form x 2 = c, the general solution described above is useless because division by zero is not well ...

  5. Continued fraction - Wikipedia

    en.wikipedia.org/wiki/Continued_fraction

    It is sometimes necessary to separate a continued fraction into its even and odd parts. For example, if the continued fraction diverges by oscillation between two distinct limit points p and q, then the sequence {x 0, x 2, x 4, ...} must converge to one of these, and {x 1, x 3, x 5, ...} must converge to the other.

  6. Partial fraction decomposition - Wikipedia

    en.wikipedia.org/wiki/Partial_fraction_decomposition

    In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator. [1]

  7. Equation solving - Wikipedia

    en.wikipedia.org/wiki/Equation_solving

    For example, the equation x + y = 2x – 1 is solved for the unknown x by the expression x = y + 1, because substituting y + 1 for x in the equation results in (y + 1) + y = 2(y + 1) – 1, a true statement. It is also possible to take the variable y to be the unknown, and then the equation is solved by y = x – 1.

  8. Rationalisation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rationalisation_(mathematics)

    In elementary algebra, root rationalisation (or rationalization) is a process by which radicals in the denominator of an algebraic fraction are eliminated.. If the denominator is a monomial in some radical, say , with k < n, rationalisation consists of multiplying the numerator and the denominator by , and replacing by x (this is allowed, as, by definition, a n th root of x is a number that ...

  9. Periodic continued fraction - Wikipedia

    en.wikipedia.org/wiki/Periodic_continued_fraction

    The proof is straightforward. From the fraction itself, one can construct the quadratic equation with integral coefficients that x must satisfy. Lagrange proved the converse of Euler's theorem: if x is a quadratic irrational, then the regular continued fraction expansion of x is periodic. [4]