enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Delft tower experiment - Wikipedia

    en.wikipedia.org/wiki/Delft_tower_experiment

    While the Delft tower experiment had been a success, it was not conducted with the same scientific rigor that later experiments were; Stevin lacked an instrument to accurately measure the speed of the falling spheres, and was forced to rely on audio feedback (caused by the spheres impacting the wooden platform below) and eyewitness accounts to ...

  3. Coriolis force - Wikipedia

    en.wikipedia.org/wiki/Coriolis_force

    Image from Cursus seu Mundus Mathematicus (1674) of C.F.M. Dechales, showing how a ball should fall from a tower on a rotating Earth. The ball is released from F. The top of the tower moves faster than its base, so while the ball falls, the base of the tower moves to I, but the ball, which has the eastward speed of the tower's top, outruns the ...

  4. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    During the first 0.05 s the ball drops one unit of distance (about 12 mm), by 0.10 s it has dropped at total of 4 units, by 0.15 s 9 units, and so on. Near the surface of the Earth, the acceleration due to gravity g = 9.807 m/s 2 ( metres per second squared , which might be thought of as "metres per second, per second"; or 32.18 ft/s 2 as "feet ...

  5. Projectile motion - Wikipedia

    en.wikipedia.org/wiki/Projectile_motion

    Hence range and maximum height are equal for all bodies that are thrown with the same velocity and direction. The horizontal range d of the projectile is the horizontal distance it has traveled when it returns to its initial height ( y = 0 {\textstyle y=0} ).

  6. Newton's cannonball - Wikipedia

    en.wikipedia.org/wiki/Newton's_cannonball

    A cannon on top of a very high mountain shoots a cannonball horizontally. If the speed is low, the cannonball quickly falls back to Earth (A, B). At intermediate speeds, it will revolve around Earth along an elliptical orbit (C, D). Beyond the escape velocity, it will leave the Earth without returning (E).

  7. Three-body problem - Wikipedia

    en.wikipedia.org/wiki/Three-body_problem

    However, in 1912 the Finnish mathematician Karl Fritiof Sundman proved that there exists an analytic solution to the three-body problem in the form of a Puiseux series, specifically a power series in terms of powers of t 1/3. [9] This series converges for all real t, except for initial conditions corresponding to zero angular momentum.

  8. Theory of impetus - Wikipedia

    en.wikipedia.org/wiki/Theory_of_impetus

    Aristotelian physics is the form of natural philosophy described in the works of the Greek philosopher Aristotle (384–322 BC). In his work Physics, Aristotle intended to establish general principles of change that govern all natural bodies, both living and inanimate, celestial and terrestrial – including all motion, quantitative change, qualitative change, and substantial change.

  9. Curvilinear motion - Wikipedia

    en.wikipedia.org/wiki/Curvilinear_motion

    Example: A stone thrown into the air at an angle. Curvilinear motion describes the motion of a moving particles that conforms to a known or fixed curve. The study of such motion involves the use of two co-ordinate systems, the first being planar motion and the latter being cylindrical motion.