enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Successor function - Wikipedia

    en.wikipedia.org/wiki/Successor_function

    The successor function is part of the formal language used to state the Peano axioms, which formalise the structure of the natural numbers.In this formalisation, the successor function is a primitive operation on the natural numbers, in terms of which the standard natural numbers and addition are defined. [1]

  3. Gödel's β function - Wikipedia

    en.wikipedia.org/wiki/Gödel's_β_function

    In mathematical logic, Gödel's β function is a function used to permit quantification over finite sequences of natural numbers in formal theories of arithmetic. The β function is used, in particular, in showing that the class of arithmetically definable functions is closed under primitive recursion, and therefore includes all primitive recursive functions.

  4. Recursion (computer science) - Wikipedia

    en.wikipedia.org/wiki/Recursion_(computer_science)

    A natural number is either 1 or n+1, where n is a natural number. Similarly recursive definitions are often used to model the structure of expressions and statements in programming languages. Language designers often express grammars in a syntax such as Backus–Naur form ; here is such a grammar, for a simple language of arithmetic expressions ...

  5. Course-of-values recursion - Wikipedia

    en.wikipedia.org/wiki/Course-of-values_recursion

    This recursion is a primitive recursion because it computes the next value (n+1)! of the function based on the value of n and the previous value n! of the function. On the other hand, the function Fib(n), which returns the nth Fibonacci number, is defined with the recursion equations =, =,

  6. Recursion - Wikipedia

    en.wikipedia.org/wiki/Recursion

    Many mathematical axioms are based upon recursive rules. For example, the formal definition of the natural numbers by the Peano axioms can be described as: "Zero is a natural number, and each natural number has a successor, which is also a natural number." [2] By this base case and recursive rule, one can generate the set of all natural numbers.

  7. Set-theoretic definition of natural numbers - Wikipedia

    en.wikipedia.org/wiki/Set-theoretic_definition...

    In Zermelo–Fraenkel (ZF) set theory, the natural numbers are defined recursively by letting 0 = {} be the empty set and n + 1 (the successor function) = n ∪ {n} for each n. In this way n = {0, 1, …, n − 1} for each natural number n. This definition has the property that n is a set with n elements.

  8. Primitive recursive function - Wikipedia

    en.wikipedia.org/wiki/Primitive_recursive_function

    The primitive recursive functions are closely related to mathematical finitism, and are used in several contexts in mathematical logic where a particularly constructive system is desired. Primitive recursive arithmetic (PRA), a formal axiom system for the natural numbers and the primitive recursive functions on them, is often used for this purpose.

  9. Computability theory - Wikipedia

    en.wikipedia.org/wiki/Computability_theory

    A function f from natural numbers to natural numbers is a (Turing) computable, or recursive function if there is a Turing machine that, on input n, halts and returns output f(n). The use of Turing machines here is not necessary; there are many other models of computation that have the same computing power as Turing machines; for example the μ ...