Search results
Results from the WOW.Com Content Network
The polynomials with the largest order are called primitive polynomials, and for polynomials of degree with binary coefficients, have order . All errors in an odd number of bits will be detected by a polynomial which is a multiple of x + 1 {\displaystyle x+1} .
The polynomial is written in binary as the coefficients; a 3rd-degree polynomial has 4 coefficients (1x 3 + 0x 2 + 1x + 1). In this case, the coefficients are 1, 0, 1 and 1. The result of the calculation is 3 bits long, which is why it is called a 3-bit CRC. However, you need 4 bits to explicitly state the polynomial. Start with the message to ...
To maximise computation speed, an intermediate remainder can be calculated by first computing the CRC of the message modulo a sparse polynomial which is a multiple of the CRC polynomial. For CRC-32, the polynomial x 123 + x 111 + x 92 + x 84 + x 64 + x 46 + x 23 + 1 has the property that its terms (feedback taps) are at least 8 positions apart.
An (,) quasi-cyclic code is a linear block code such that, for some which is coprime to , the polynomial () is a codeword polynomial whenever () is a codeword polynomial. Here, codeword polynomial is an element of a linear code whose code words are polynomials that are divisible by a polynomial of shorter length called the generator polynomial .
Now, we can think of words as polynomials over , where the individual symbols of a word correspond to the different coefficients of the polynomial. To define a cyclic code, we pick a fixed polynomial, called generator polynomial. The codewords of this cyclic code are all the polynomials that are divisible by this generator polynomial.
A polynomial code of length is cyclic if and only if its generator polynomial divides Since g ( x ) {\displaystyle g(x)} is the minimal polynomial with roots α c , … , α c + d − 2 , {\displaystyle \alpha ^{c},\ldots ,\alpha ^{c+d-2},} it suffices to check that each of α c , … , α c + d − 2 {\displaystyle \alpha ^{c},\ldots ,\alpha ...
The case of the 105th cyclotomic polynomial is interesting because 105 is the least positive integer that is the product of three distinct odd prime numbers (3×5×7) and this polynomial is the first one that has a coefficient other than 1, 0, or −1: [3]
In general terms, ideal lattices are lattices corresponding to ideals in rings of the form [] / for some irreducible polynomial of degree . [1] All of the definitions of ideal lattices from prior work are instances of the following general notion: let be a ring whose additive group is isomorphic to (i.e., it is a free -module of rank), and let be an additive isomorphism mapping to some lattice ...