Search results
Results from the WOW.Com Content Network
An (,) quasi-cyclic code is a linear block code such that, for some which is coprime to , the polynomial () is a codeword polynomial whenever () is a codeword polynomial. Here, codeword polynomial is an element of a linear code whose code words are polynomials that are divisible by a polynomial of shorter length called the generator polynomial .
The cycle index polynomial of a permutation group is the average of the cycle index monomials of its elements. The phrase cycle indicator is also sometimes used in place of cycle index . Knowing the cycle index polynomial of a permutation group, one can enumerate equivalence classes due to the group 's action .
The polynomial is written in binary as the coefficients; a 3rd-degree polynomial has 4 coefficients (1x 3 + 0x 2 + 1x + 1). In this case, the coefficients are 1, 0, 1 and 1. The result of the calculation is 3 bits long, which is why it is called a 3-bit CRC. However, you need 4 bits to explicitly state the polynomial. Start with the message to ...
Now, we can think of words as polynomials over , where the individual symbols of a word correspond to the different coefficients of the polynomial. To define a cyclic code, we pick a fixed polynomial, called generator polynomial. The codewords of this cyclic code are all the polynomials that are divisible by this generator polynomial.
The case of the 105th cyclotomic polynomial is interesting because 105 is the least positive integer that is the product of three distinct odd prime numbers (3×5×7) and this polynomial is the first one that has a coefficient other than 1, 0, or −1: [3]
A cyclic group is a group which is equal to one of its cyclic subgroups: G = g for some element g, called a generator of G. For a finite cyclic group G of order n we have G = {e, g, g 2, ... , g n−1}, where e is the identity element and g i = g j whenever i ≡ j (mod n); in particular g n = g 0 = e, and g −1 = g n−1.
Any circulant is a matrix polynomial (namely, the associated polynomial) in the cyclic permutation matrix: = + + + + = (), where is given by the companion matrix = []. The set of n × n {\displaystyle n\times n} circulant matrices forms an n {\displaystyle n} - dimensional vector space with respect to addition and scalar multiplication.
A polynomial code of length is cyclic if and only if its generator polynomial divides Since g ( x ) {\displaystyle g(x)} is the minimal polynomial with roots α c , … , α c + d − 2 , {\displaystyle \alpha ^{c},\ldots ,\alpha ^{c+d-2},} it suffices to check that each of α c , … , α c + d − 2 {\displaystyle \alpha ^{c},\ldots ,\alpha ...