Ads
related to: project a circle onto sphere examples pdf worksheet 2 3
Search results
Results from the WOW.Com Content Network
Stereographic projection of the unit sphere from the north pole onto the plane z = 0, shown here in cross section. The unit sphere S 2 in three-dimensional space R 3 is the set of points (x, y, z) such that x 2 + y 2 + z 2 = 1. Let N = (0, 0, 1) be the "north pole", and let M be the rest of the sphere.
Gnomonic projection of a portion of the north hemisphere centered on the geographic North Pole The gnomonic projection with Tissot's indicatrix of deformation. A gnomonic projection, also known as a central projection or rectilinear projection, is a perspective projection of a sphere, with center of projection at the sphere's center, onto any plane not passing through the center, most commonly ...
If the normal of the viewing plane (the camera direction) is parallel to one of the primary axes (which is the x, y, or z axis), the mathematical transformation is as follows; To project the 3D point , , onto the 2D point , using an orthographic projection parallel to the y axis (where positive y represents forward direction - profile view ...
Boundary is a circle. All parallels and meridians are circular arcs. Usually clipped near 80°N/S. Standard world projection of the NGS in 1922–1988. c. 150: Equidistant conic = simple conic: Conic Equidistant Based on Ptolemy's 1st Projection Distances along meridians are conserved, as is distance along one or two standard parallels. [3] 1772
2-sphere wireframe as an orthogonal projection Just as a stereographic projection can project a sphere's surface to a plane, it can also project a 3-sphere into 3-space. This image shows three coordinate directions projected to 3-space: parallels (red), meridians (blue), and hypermeridians (green).
They are written in terms of longitude (λ) and latitude (φ) on the sphere. Define the radius of the sphere R and the center point (and origin) of the projection (λ 0, φ 0). The equations for the orthographic projection onto the (x, y) tangent plane reduce to the following: [1]
A circle with non-zero geodesic curvature is called a small circle, and is analogous to a circle in the plane. A small circle separates the sphere into two spherical disks or spherical caps, each with the circle as its boundary. For any triple of distinct non-antipodal points a unique small circle passes through all three.
Technically, Hopf found a many-to-one continuous function (or "map") from the 3-sphere onto the 2-sphere such that each distinct point of the 2-sphere is mapped from a distinct great circle of the 3-sphere . [1] Thus the 3-sphere is composed of fibers, where each fiber is a circle — one for each point of the 2-sphere.
Ads
related to: project a circle onto sphere examples pdf worksheet 2 3