Search results
Results from the WOW.Com Content Network
It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations. The binary operations of set union and intersection satisfy many identities. Several of these identities or "laws" have well established names.
Fermat's little theorem and some proofs; Gödel's completeness theorem and its original proof; Mathematical induction and a proof; Proof that 0.999... equals 1; Proof that 22/7 exceeds π; Proof that e is irrational; Proof that π is irrational; Proof that the sum of the reciprocals of the primes diverges
Visual proof of the Pythagorean identity: for any angle , the point (,) = (, ) lies on the unit circle, which satisfies the equation + =.Thus, + =. In mathematics, an identity is an equality relating one mathematical expression A to another mathematical expression B, such that A and B (which might contain some variables) produce the same value for all values of the variables ...
In mathematics, the algebra of sets, not to be confused with the mathematical structure of an algebra of sets, defines the properties and laws of sets, the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions ...
List of logarithmic identities; List of mathematical functions; List of mathematical identities; List of mathematical proofs; List of misnamed theorems; List of scientific laws; List of theories; Most of the results below come from pure mathematics, but some are from theoretical physics, economics, and other applied fields.
The above argument works because the exact same reasoning could be applied if the alternative assumption, namely, that the first object is blue, were made, or, similarly, that the words 'red' and 'blue' can be freely exchanged in the wording of the proof. As a result, the use of "without loss of generality" is valid in this case.
An archetypal double counting proof is for the well known formula for the number () of k-combinations (i.e., subsets of size k) of an n-element set: = (+) ().Here a direct bijective proof is not possible: because the right-hand side of the identity is a fraction, there is no set obviously counted by it (it even takes some thought to see that the denominator always evenly divides the numerator).
It is an important proof technique in set theory, topology and other fields. Proofs by transfinite induction typically distinguish three cases: when n is a minimal element, i.e. there is no element smaller than n; when n has a direct predecessor, i.e. the set of elements which are smaller than n has a largest element;