Search results
Results from the WOW.Com Content Network
For example, a fraction is put in lowest terms by cancelling out the common factors of the numerator and the denominator. [2] As another example, if a×b=a×c, then the multiplicative term a can be canceled out if a≠0, resulting in the equivalent expression b=c; this is equivalent to dividing through by a.
The surprising part of the character formula is that when we compute this product, only a small number of terms actually remain. Many more terms than this occur at least once in the product of the character and the Weyl denominator, but most of these terms cancel out to zero. [5]
In linear algebra, reduction refers to applying simple rules to a series of equations or matrices to change them into a simpler form. In the case of matrices, the process involves manipulating either the rows or the columns of the matrix and so is usually referred to as row-reduction or column-reduction, respectively.
A common, vulgar, [n 1] or simple fraction (examples: 1 / 2 and 17 / 3 ) consists of an integer numerator, displayed above a line (or before a slash like 1 ⁄ 2), and a non-zero integer denominator, displayed below (or after) that line. If these integers are positive, then the numerator represents a number of equal parts, and ...
In elementary algebra, root rationalisation (or rationalization) is a process by which radicals in the denominator of an algebraic fraction are eliminated.. If the denominator is a monomial in some radical, say , with k < n, rationalisation consists of multiplying the numerator and the denominator by , and replacing by x (this is allowed, as, by definition, a n th root of x is a number that ...
In other words, a fraction a / b is irreducible if and only if a and b are coprime, that is, if a and b have a greatest common divisor of 1. In higher mathematics, "irreducible fraction" may also refer to rational fractions such that the numerator and the denominator are coprime polynomials. [2]
The rank of a root system Φ is the dimension of E. Two root systems may be combined by regarding the Euclidean spaces they span as mutually orthogonal subspaces of a common Euclidean space. A root system which does not arise from such a combination, such as the systems A 2, B 2, and G 2 pictured to the right, is said to be irreducible.
A similar well-known framework is the Roman numeral system. It has the symbols I, V, X, L, C, D, M as its basic numerals to represent the numbers 1, 5, 10, 50, 100, 500, and 1000. [33] A numeral system is positional if the position of a basic numeral in a compound expression determines its value.