Search results
Results from the WOW.Com Content Network
Variable costs are the sum of marginal costs over all units produced. They can also be considered normal costs. Fixed costs and variable costs make up the two components of total cost. Direct costs are costs that can easily be associated with a particular cost object. [2] However, not all variable costs are direct costs.
The prime-counting function can be expressed by Riemann's explicit formula as a sum in which each term comes from one of the zeros of the zeta function; the main term of this sum is the logarithmic integral, and the remaining terms cause the sum to fluctuate above and below the main term. [100]
However, it does not contain all the prime numbers, since the terms gcd(n + 1, a n) are always odd and so never equal to 2. 587 is the smallest prime (other than 2) not appearing in the first 10,000 outcomes that are different from 1. Nevertheless, in the same paper it was conjectured to contain all odd primes, even though it is rather inefficient.
A cluster prime is a prime p such that every even natural number k ≤ p − 3 is the difference of two primes not exceeding p. 3, 5, 7, 11, 13, 17, 19, 23, ... (OEIS: A038134) All odd primes between 3 and 89, inclusive, are cluster primes. The first 10 primes that are not cluster primes are: 2, 97, 127, 149, 191, 211, 223, 227, 229, 251.
In number theory, Chen's theorem states that every sufficiently large even number can be written as the sum of either two primes, or a prime and a semiprime (the product of two primes). It is a weakened form of Goldbach's conjecture, which states that every even number is the sum of two primes.
The prime number theorem is obtained there in an equivalent form that the Cesàro sum of the values of the Liouville function is zero. The Liouville function is ( − 1 ) ω ( n ) {\displaystyle (-1)^{\omega (n)}} where ω ( n ) {\displaystyle \omega (n)} is the number of prime factors, with multiplicity, of the integer n {\displaystyle n} .
For example, 3 is a Mersenne prime as it is a prime number and is expressible as 2 2 − 1. [1] [2] The exponents p corresponding to Mersenne primes must themselves be prime, although the vast majority of primes p do not lead to Mersenne primes—for example, 2 11 − 1 = 2047 = 23 × 89. [3]
Any prime number is prime to any number it does not measure. [note 7] Proposition 30 If two numbers, by multiplying one another, make the same number, and any prime number measures the product, it also measures one of the original numbers. [note 8] Proof of 30 If c, a prime number, measure ab, c measures either a or b. Suppose c does not measure a.