enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear discriminant analysis - Wikipedia

    en.wikipedia.org/wiki/Linear_discriminant_analysis

    Linear discriminant analysis (LDA), normal discriminant analysis (NDA), canonical variates analysis (CVA), or discriminant function analysis is a generalization of Fisher's linear discriminant, a method used in statistics and other fields, to find a linear combination of features that characterizes or separates two or more classes of objects or ...

  3. Kernel Fisher discriminant analysis - Wikipedia

    en.wikipedia.org/wiki/Kernel_Fisher_Discriminant...

    In statistics, kernel Fisher discriminant analysis (KFD), [1] also known as generalized discriminant analysis [2] and kernel discriminant analysis, [3] is a kernelized version of linear discriminant analysis (LDA). It is named after Ronald Fisher.

  4. Iris flower data set - Wikipedia

    en.wikipedia.org/wiki/Iris_flower_data_set

    Scatterplot of the data set. The Iris flower data set or Fisher's Iris data set is a multivariate data set used and made famous by the British statistician and biologist Ronald Fisher in his 1936 paper The use of multiple measurements in taxonomic problems as an example of linear discriminant analysis. [1]

  5. Ronald Fisher - Wikipedia

    en.wikipedia.org/wiki/Ronald_Fisher

    Linear discriminant analysis is a generalization of Fisher's linear discriminant [66] [103] Fisher information, see also scoring algorithm also known as Fisher's scoring, and Minimum Fisher information, a variational principle which, when applied with the proper constraints needed to reproduce empirically known expectation values, determines ...

  6. Dimensionality reduction - Wikipedia

    en.wikipedia.org/wiki/Dimensionality_reduction

    Linear discriminant analysis (LDA) is a generalization of Fisher's linear discriminant, a method used in statistics, pattern recognition, and machine learning to find a linear combination of features that characterizes or separates two or more classes of objects or events.

  7. Homoscedasticity and heteroscedasticity - Wikipedia

    en.wikipedia.org/wiki/Homoscedasticity_and...

    One popular example of an algorithm that assumes homoscedasticity is Fisher's linear discriminant analysis. The concept of homoscedasticity can be applied to distributions on spheres. The concept of homoscedasticity can be applied to distributions on spheres.

  8. Linear classifier - Wikipedia

    en.wikipedia.org/wiki/Linear_classifier

    Fisher's Linear Discriminant Analysis—an algorithm (different than "LDA") that maximizes the ratio of between-class scatter to within-class scatter, without any other assumptions. It is in essence a method of dimensionality reduction for binary classification.

  9. Mahalanobis distance - Wikipedia

    en.wikipedia.org/wiki/Mahalanobis_distance

    Mahalanobis distance is widely used in cluster analysis and classification techniques. It is closely related to Hotelling's T-square distribution used for multivariate statistical testing and Fisher's linear discriminant analysis that is used for supervised classification. [13]