Search results
Results from the WOW.Com Content Network
To calculate the 49th Fibonacci number, it took a MS Visual C++ program approximately 18% longer than the TCC compiled program. [citation needed] A test compared different C compilers by using them to compile the GNU C Compiler (GCC) itself, and then using the resulting compilers to compile GCC again. Compared to GCC 3.4.2, a TCC modified to ...
The permutation graphs of stack-sortable permutations are trivially perfect. [4] For each element i of a permutation p, define b i to be the number of other elements that are to the left of and greater than i. Then p is stack-sortable if and only if, for all i, b i − b i + 1 ≤ 1. [1]
The number of permutations satisfying the restrictions is thus: 4! − (12 + 6 + 0 + 0) + (4) = 24 − 18 + 4 = 10. The final 4 in this computation is the number of permutations having both properties P 1 and P 2. There are no other non-zero contributions to the formula.
In information theory, the Hamming distance between two strings or vectors of equal length is the number of positions at which the corresponding symbols are different. In other words, it measures the minimum number of substitutions required to change one string into the other, or equivalently, the minimum number of errors that could have transformed one string into the other.
The ! permutations of the numbers from 1 to may be placed in one-to-one correspondence with the ! numbers from 0 to ! by pairing each permutation with the sequence of numbers that count the number of positions in the permutation that are to the right of value and that contain a value less than (that is, the number of inversions for which is the ...
The Portable C Compiler (also known as pcc or sometimes pccm - portable C compiler machine) is an early compiler for the C programming language written by Stephen C. Johnson of Bell Labs in the mid-1970s, [1] based in part on ideas proposed by Alan Snyder in 1973, [2] [3] and "distributed as the C compiler by Bell Labs... with the blessing of Dennis Ritchie."
Constant folding is the process of recognizing and evaluating constant expressions at compile time rather than computing them at runtime. Terms in constant expressions are typically simple literals, such as the integer literal 2, but they may also be variables whose values are known at compile time.
The usual way to prove that there are n! different permutations of n objects is to observe that the first object can be chosen in n different ways, the next object in n − 1 different ways (because choosing the same number as the first is forbidden), the next in n − 2 different ways (because there are now 2 forbidden values), and so forth.