Search results
Results from the WOW.Com Content Network
In control theory, a continuous linear time-invariant system (LTI) is exponentially stable if and only if the system has eigenvalues (i.e., the poles of input-to-output systems) with strictly negative real parts (i.e., in the left half of the complex plane). [1]
This is a list of exponential topics, ... Exponential stability; Exponential sum; Exponential time. ... Lifetime (physics)
Other names for linear stability include exponential stability or stability in terms of first approximation. [ 1 ] [ 2 ] If there exists an eigenvalue with zero real part then the question about stability cannot be solved on the basis of the first approximation and we approach the so-called "centre and focus problem".
In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time ...
The notion of exponential stability guarantees a minimal rate of decay, i.e., an estimate of how quickly the solutions converge. The idea of Lyapunov stability can be extended to infinite-dimensional manifolds, where it is known as structural stability, which concerns the behavior of different but "nearby" solutions to differential equations.
Expressing the first exponential as a series will yield another series in positive powers of x − μ which is generally less useful. For one-sided stable distribution, the above series expansion needs to be modified, since q = exp ( − i α π / 2 ) {\displaystyle q=\exp(-i\alpha \pi /2)} and q i α = 1 {\displaystyle qi^{\alpha }=1} .
It is ubiquitous in nature and statistics due to the central limit theorem: every variable that can be modelled as a sum of many small independent, identically distributed variables with finite mean and variance is approximately normal. The normal-exponential-gamma distribution; The normal-inverse Gaussian distribution
The stretched exponential is also the characteristic function, basically the Fourier transform, of the Lévy symmetric alpha-stable distribution. In physics, the stretched exponential function is often used as a phenomenological description of relaxation in disordered systems.