Search results
Results from the WOW.Com Content Network
Level of measurement or scale of measure is a classification that describes the nature of information within the values assigned to variables. [1] Psychologist Stanley Smith Stevens developed the best-known classification with four levels, or scales, of measurement: nominal, ordinal, interval, and ratio.
Scaling of data: One of the properties of the tests is the scale of the data, which can be interval-based, ordinal or nominal. [3] Nominal scale is also known as categorical. [6] Interval scale is also known as numerical. [6] When categorical data has only two possibilities, it is called binary or dichotomous. [1]
Some data are measured at the nominal level. That is, any numbers used are mere labels; they express no mathematical properties. Examples are SKU inventory codes and UPC bar codes. Some data are measured at the ordinal level. Numbers indicate the relative position of items, but not the magnitude of difference. An example is a preference ranking.
Nominal data is often compared to ordinal and ratio data to determine if individual data points influence the behavior of quantitatively driven datasets. [1] [4] For example, the effect of race (nominal) on income (ratio) could be investigated by regressing the level of income upon one or more dummy variables that specify race. When nominal ...
[1]: 2 These data exist on an ordinal scale, one of four levels of measurement described by S. S. Stevens in 1946. The ordinal scale is distinguished from the nominal scale by having a ranking. [2] It also differs from the interval scale and ratio scale by not having category widths that represent equal increments of the underlying attribute. [3]
The concept of data type is similar to the concept of level of measurement, but more specific. For example, count data requires a different distribution (e.g. a Poisson distribution or binomial distribution) than non-negative real-valued data require, but both fall under the same level of measurement (a ratio scale).
Likert scale data can, in principle, be used as a basis for obtaining interval level estimates on a continuum by applying the polytomous Rasch model, when data can be obtained that fit this model. In addition, the polytomous Rasch model permits testing of the hypothesis that the statements reflect increasing levels of an attitude or trait, as ...
The item-total correlation approach is a way of identifying a group of questions whose responses can be combined into a single measure or scale. This is a simple approach that works by ensuring that, when considered across a whole population, responses to the questions in the group tend to vary together and, in particular, that responses to no individual question are poorly related to an ...