Search results
Results from the WOW.Com Content Network
This 4-fold and 8-fold periodicity in the structure of manifolds is related to the 4-fold periodicity of L-theory and the 8-fold periodicity of real topological K-theory, which is known as Bott periodicity. If a compact oriented smooth spin manifold has dimension n ≡ 4 mod 8, or ν 2 (n) = 2 exactly, then its signature is an integer multiple ...
In mathematics, a multiple is the product of any quantity and an integer. [1] In other words, for the quantities a and b, it can be said that b is a multiple of a if b = na for some integer n, which is called the multiplier. If a is not zero, this is equivalent to saying that / is an integer.
For example, 10 is a multiple of 5 because 5 × 2 = 10, so 10 is divisible by 5 and 2. Because 10 is the smallest positive integer that is divisible by both 5 and 2, it is the least common multiple of 5 and 2. By the same principle, 10 is the least common multiple of −5 and −2 as well.
For example, the polynomial can ... Therefore, the difference of two even perfect squares is a multiple of 4 and the difference of two odd perfect squares is a ...
Examples include e and π. Trigonometric number: Any number that is the sine or cosine of a rational multiple of π. Quadratic surd: A root of a quadratic equation with rational coefficients. Such a number is algebraic and can be expressed as the sum of a rational number and the square root of a rational number.
The number formed by its first four digits abcd is a multiple of 4. etc. Definition ... Example. For example, 10801 is a seven-digit polydivisible number in base 4, as
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Using the example above: 16,499,205,854,376 has four of the digits 1, 4 and 7 and four of the digits 2, 5 and 8; since 4 − 4 = 0 is a multiple of 3, the number 16,499,205,854,376 is divisible by 3. Subtracting 2 times the last digit from the rest gives a multiple of 3.