Search results
Results from the WOW.Com Content Network
Crystal twinning occurs when two or more adjacent crystals of the same mineral are oriented so that they share some of the same crystal lattice points in a symmetrical manner. The result is an intergrowth of two separate crystals that are tightly bonded to each other.
In mineralogy and the crystal twinning literature they are referred to as a type of cyclic twin where a number of identical single crystal units are arranged in a ring-like pattern where they all join at a common point or line. [11] The name fiveling comes from them having five members (single crystals). [12]
Spinel law contact twinning. A single crystal is shown on the left with the composition plane in red. At right, the crystal has effectively been cut on the composition plane and the front half rotated by 180° to produce a contact twin. This creates reentrants at the top, lower left, and lower right of the composition plane. [19]
A stacking fault is an irregularity in the planar stacking sequence of atoms in a crystal – in FCC metals the normal stacking sequence is ABCABC etc., but if a stacking fault is introduced it may introduce an irregularity such as ABCBCABC into the normal stacking sequence. These irregularities carry a certain energy which is called the ...
[citation needed] Crystals can be marred by twinning, which can occur when a unit cell can pack equally favorably in multiple orientations; although recent advances in computational methods may allow solving the structure of some twinned crystals. Having failed to crystallize a target molecule, a crystallographer may try again with a slightly ...
Twinning is a phenomenon somewhere between a crystallographic defect and a grain boundary. Like a grain boundary, a twin boundary has different crystal orientations on its two sides. But unlike a grain boundary, the orientations are not random, but related in a specific, mirror-image way. Mosaicity is a spread of crystal plane orientations.
Plasticity in a crystal of pure metal is primarily caused by two modes of deformation in the crystal lattice: slip and twinning. Slip is a shear deformation which moves the atoms through many interatomic distances relative to their initial positions.
Dislocation creep is a non-linear (plastic) deformation mechanism in which vacancies in the crystal glide and climb past obstruction sites within the crystal lattice. [1] These migrations within the crystal lattice can occur in one or more directions and are triggered by the effects of increased differential stress .