Search results
Results from the WOW.Com Content Network
Revolution Analytics – production-grade software for the enterprise big data analytics; RStudio – GUI interface and development environment for R; ROOT – an open-source C++ system for data storage, processing and analysis, developed by CERN and used to find the Higgs boson; Salstat – menu-driven statistics software
Cloudera, an American-based software company that provides Apache Hadoop-based software, support and services, and training to business customers; Compuverde, an IT company with a focus on big data storage; CVidya, a provider of big data analytics products for communications and digital service providers
Big data has increased the demand of information management specialists so much so that Software AG, Oracle Corporation, IBM, Microsoft, SAP, EMC, HP, and Dell have spent more than $15 billion on software firms specializing in data management and analytics. In 2010, this industry was worth more than $100 billion and was growing at almost 10 ...
Analytics may apply to a variety of fields such as marketing, management, finance, online systems, information security, and software services. Since analytics can require extensive computation (see big data), the algorithms and software used for analytics harness the most current methods in computer science, statistics, and mathematics. [4]
SPSS Statistics is a statistical software suite developed by IBM for data management, advanced analytics, multivariate analysis, business intelligence, and criminal investigation. Long produced by SPSS Inc. , it was acquired by IBM in 2009.
Data science process flowchart from Doing Data Science, by Schutt & O'Neil (2013) Analysis refers to dividing a whole into its separate components for individual examination. [10] Data analysis is a process for obtaining raw data, and subsequently converting it into information useful for decision-making by users. [1]
Data as a service is a general term that encompasses data-related services. Now DaaS service providers are replacing traditional data analytics services or happily clustering with existing services to offer more value-addition to customers. The DaaS providers are curating, aggregating, analyzing multi-source data in order to provide additional ...
The difficulty in ensuring data quality is integrating and reconciling data across different systems, and then deciding what subsets of data to make available. [3] Previously, analytics was considered a type of after-the-fact method of forecasting consumer behavior by examining the number of units sold in the last quarter or the last year. This ...