Search results
Results from the WOW.Com Content Network
The resulting object is called an object copy or simply copy of the original object. Copying is basic but has subtleties and can have significant overhead. There are several ways to copy an object, most commonly by a copy constructor or cloning. Copying is done mostly so the copy can be modified or moved, or the current value preserved.
For example, in the Pascal programming language, the declaration type MyTable = array [1.. 4, 1.. 2] of integer, defines a new array data type called MyTable. The declaration var A: MyTable then defines a variable A of that type, which is an aggregate of eight elements, each being an integer variable identified by two indices.
For example, to perform an element by element sum of two arrays, a and b to produce a third c, it is only necessary to write c = a + b In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x)
Arrays can have multiple dimensions, thus it is not uncommon to access an array using multiple indices. For example, a two-dimensional array A with three rows and four columns might provide access to the element at the 2nd row and 4th column by the expression A[1][3] in the case of a zero-based indexing
For example, strings and arrays are passed by reference, but when modified, they are duplicated if they have non-zero reference counts. This allows them to act as value types without the performance problems of copying on assignment or making them immutable. [8] In the Qt framework, many types are copy-on-write ("implicitly shared" in Qt's terms).
If the array abstraction does not support true negative indices (as for example the arrays of Ada and Pascal do), then negative indices for the bounds of the slice for a given dimension are sometimes used to specify an offset from the end of the array in that dimension. In 1-based schemes, -1 generally would indicate the second-to-last item ...
For every type T, except void and function types, there exist the types "array of N elements of type T". An array is a collection of values, all of the same type, stored contiguously in memory. An array of size N is indexed by integers from 0 up to and including N−1. Here is a brief example:
Array's destructor deletes the data array of the original, therefore, when it deleted copy's data, because they share the same pointer, it also deleted first's data. Line (2) now accesses invalid data and writes to it. This produces a segmentation fault. If we write our own copy constructor that performs a deep copy then this problem goes away.