enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fixed end moment - Wikipedia

    en.wikipedia.org/wiki/Fixed_end_moment

    The fixed end moments are reaction moments developed in a beam member under certain load conditions with both ends fixed. A beam with both ends fixed is statically indeterminate to the 3rd degree, and any structural analysis method applicable on statically indeterminate beams can be used to calculate the fixed end moments.

  3. Moment distribution method - Wikipedia

    en.wikipedia.org/wiki/Moment_distribution_method

    Let one end (end A) of a fixed beam be released and applied a moment while the other end (end B) remains fixed. This will cause end A to rotate through an angle θ A {\displaystyle \theta _{A}} . Once the magnitude of M B {\displaystyle M_{B}} developed at end B is found, the carryover factor of this member is given as the ratio of M B ...

  4. Shear and moment diagram - Wikipedia

    en.wikipedia.org/wiki/Shear_and_moment_diagram

    Shear and Bending moment diagram for a simply supported beam with a concentrated load at mid-span. Shear force and bending moment diagrams are analytical tools used in conjunction with structural analysis to help perform structural design by determining the value of shear forces and bending moments at a given point of a structural element such as a beam.

  5. Beam (structure) - Wikipedia

    en.wikipedia.org/wiki/Beam_(structure)

    In engineering, beams are of several types: [2] Simply supported – a beam supported on the ends which are free to rotate and have no moment resistance. Fixed or encastré (encastrated) – a beam supported on both ends and restrained from rotation. Overhanging – a simple beam extending beyond its support on one end.

  6. Bending moment - Wikipedia

    en.wikipedia.org/wiki/Bending_moment

    The diagram shows a beam which is simply supported (free to rotate and therefore lacking bending moments) at both ends; the ends can only react to the shear loads. Other beams can have both ends fixed (known as encastre beam); therefore each end support has both bending moments and shear reaction loads.

  7. Theorem of three moments - Wikipedia

    en.wikipedia.org/wiki/Theorem_of_three_moments

    where a 1 is the area on the bending moment diagram due to vertical loads on AB, a 2 is the area due to loads on BC, x 1 is the distance from A to the centroid of the bending moment diagram of beam AB, x 2 is the distance from C to the centroid of the area of the bending moment diagram of beam BC.

  8. Span (engineering) - Wikipedia

    en.wikipedia.org/wiki/Span_(engineering)

    In engineering, span is the distance between two adjacent structural supports (e.g., two piers) of a structural member (e.g., a beam). Span is measured in the horizontal direction either between the faces of the supports (clear span) or between the centers of the bearing surfaces (effective span): [1] A span can be closed by a solid beam or by ...

  9. Influence line - Wikipedia

    en.wikipedia.org/wiki/Influence_line

    Figure 1: (a) This simple supported beam is shown with a unit load placed a distance x from the left end. Its influence lines for four different functions: (b) the reaction at the left support (denoted A), (c) the reaction at the right support (denoted C), (d) one for shear at a point B along the beam, and (e) one for moment also at point B. Figure 2: The change in Bending Moment in a ...