Search results
Results from the WOW.Com Content Network
In this situation it is generally uncommon to talk about half-life in the first place, but sometimes people will describe the decay in terms of its "first half-life", "second half-life", etc., where the first half-life is defined as the time required for decay from the initial value to 50%, the second half-life is from 50% to 25%, and so on. [7]
Terms "partial half-life" and "partial mean life" denote quantities derived from a decay constant as if the given decay mode were the only decay mode for the quantity. The term "partial half-life" is misleading, because it cannot be measured as a time interval for which a certain quantity is halved.
The integral solution is described by exponential decay: =, where N 0 is the initial quantity of atoms at time t = 0. Half-life T 1/2 is defined as the length of time for half of a given quantity of radioactive atoms to undergo radioactive decay:
Carbon-14 has a half-life of 5700(30) years [27] and a decay rate of 14 disintegrations per minute (dpm) per gram of natural carbon. If an artifact is found to have radioactivity of 4 dpm per gram of its present C, we can find the approximate age of the object using the above equation:
Particle decay is a Poisson process, and hence the probability that a particle survives for time t before decaying (the survival function) is given by an exponential distribution whose time constant depends on the particle's velocity:
The half-life of this isotope is 6.480 days, [2] which corresponds to a total decay constant of 0.1070 d −1. Then the partial decay constants, as computed from the branching fractions, are 0.1050 d −1 for ε/β + decays, and 2.14×10 −4 d −1 for β − decays. Their respective partial half-lives are 6.603 d and 347 d.
With the decay constant it is possible to calculate the effective half-life using the formula: t 1 / 2 = ln ( 2 ) λ e {\displaystyle t_{1/2}={\frac {\ln(2)}{\lambda _{e}}}} The biological decay constant is often approximated as it is more difficult to accurately determine than the physical decay constant.
As an extreme example, the half-life of the isotope bismuth-209 is 2.01 × 10 19 years. The isotopes in beta-decay stable isobars that are also stable with regards to double beta decay with mass number A = 5, A = 8, 143 ≤ A ≤ 155, 160 ≤ A ≤ 162, and A ≥ 165 are theorized to undergo