enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Discriminant - Wikipedia

    en.wikipedia.org/wiki/Discriminant

    If the discriminant is positive, the number of non-real roots is a multiple of 4. That is, there is a nonnegative integer k ≤ n/4 such that there are 2k pairs of complex conjugate roots and n − 4k real roots. If the discriminant is negative, the number of non-real roots is not a multiple of 4.

  3. Discriminant of an algebraic number field - Wikipedia

    en.wikipedia.org/wiki/Discriminant_of_an...

    A fundamental domain of the ring of integers of the field K obtained from Q by adjoining a root of x 3 − x 2 − 2x + 1. This fundamental domain sits inside K ⊗ Q R. The discriminant of K is 49 = 7 2. Accordingly, the volume of the fundamental domain is 7 and K is only ramified at 7.

  4. Quadratic integer - Wikipedia

    en.wikipedia.org/wiki/Quadratic_integer

    For D > 0, ω is a positive irrational real number, and the corresponding quadratic integer ring is a set of algebraic real numbers. The solutions of the Pell's equation X 2 − DY 2 = 1, a Diophantine equation that has been widely studied, are the units of these rings, for D ≡ 2, 3 (mod 4). For D = 5, ω = ⁠ 1+ √ 5 / 2 ⁠ is the golden ...

  5. Quadratic equation - Wikipedia

    en.wikipedia.org/wiki/Quadratic_equation

    If a, b, and c are real numbers and the domain of f is the set of real numbers, then the roots of f are exactly the x-coordinates of the points where the graph touches the x-axis. If the discriminant is positive, the graph touches the x-axis at two points; if zero, the graph touches at one point; and if negative, the graph does not touch the x ...

  6. Vieta's formulas - Wikipedia

    en.wikipedia.org/wiki/Vieta's_formulas

    Typically, R is the ring of the integers, the field of fractions is the field of the rational numbers and the algebraically closed field is the field of the complex numbers. Vieta's formulas are then useful because they provide relations between the roots without having to compute them.

  7. Quadratic formula - Wikipedia

    en.wikipedia.org/wiki/Quadratic_formula

    The roots of the quadratic function y = ⁠ 1 / 2 ⁠ x 2 − 3x + ⁠ 5 / 2 ⁠ are the places where the graph intersects the x-axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.

  8. Casus irreducibilis - Wikipedia

    en.wikipedia.org/wiki/Casus_irreducibilis

    Casus irreducibilis (from Latin 'the irreducible case') is the name given by mathematicians of the 16th century to cubic equations that cannot be solved in terms of real radicals, that is to those equations such that the computation of the solutions cannot be reduced to the computation of square and cube roots.

  9. Xcas - Wikipedia

    en.wikipedia.org/wiki/Xcas

    Here is a brief overview of what Xcas is able to do: [9] [10] Xcas has the ability of a scientific calculator that provides show input and writes pretty print; Xcas also works as a spreadsheet; [11]