Search results
Results from the WOW.Com Content Network
[7]: 8 If the center of gravity is aft of the neutral point, the static margin is negative. The greater the static margin, the more stable the aircraft will be. Most conventional aircraft have positive longitudinal stability, providing the aircraft's center of gravity lies within the approved range.
It is one measure of how strongly an aircraft wants to fly "nose first", which is clearly very important. Stability derivatives, and also control derivatives, are measures of how particular forces and moments on an aircraft change as other parameters related to stability change (parameters such as airspeed, altitude, angle of attack, etc.). For ...
Static stability is the ability of a robot to remain upright when at rest, or under acceleration and deceleration Static stability may also refer to: In aircraft or missiles: Static margin — a concept used to characterize the static stability and controllability of aircraft and missiles.
For a stable aircraft, if the aircraft pitches up, the wings and tail create a pitch-down moment which tends to restore the aircraft to its original attitude. For an unstable aircraft, a disturbance in pitch will lead to an increasing pitching moment. Longitudinal static stability is the ability of an aircraft to recover from an initial ...
Ground test running of the engines was co-ordinated between Bristol Siddeley, Patchway; the National Gas Turbine Establishment (NGTE), Pystock, UK; and the Centre d'Essais des Propulseurs (CEPr) at Saclay, France. [5] Increases in aircraft weight during the design phase led to a take-off thrust requirement which could not be met by the engine.
The General Electric CF34 is a civilian high-bypass turbofan developed by GE Aviation from its TF34 military engine. The CF34 is used on a number of business and regional jets, including the Bombardier CRJ series, the Embraer E-Jets, and Comac ARJ21. [2] [3] In 2012, there were 5,600 engines in service.
The Static Margin can then be used to quantify the AC: = where: C n = yawing moment coefficient; C m = pitching moment coefficient; C l = rolling moment coefficient; C x = X-force ≈ Drag; C y = Y-force ≈ Side Force; C z = Z-force ≈ Lift; ref = reference point (about which moments were taken) c = reference length
The relevance for gas turbine-powered aircraft is the use of a secondary jet of air with a propeller or, for jet engine performance, the introduction of the bypass engine. The overall efficiency of the jet engine is thermal efficiency multiplied by propulsive efficiency ( η o = η t h η p r {\displaystyle \eta _{o}=\eta _{th}\eta _{pr}} ).