Search results
Results from the WOW.Com Content Network
It gives the contact stress as a function of the normal contact force, the radii of curvature of both bodies and the modulus of elasticity of both bodies. Hertzian contact stress forms the foundation for the equations for load bearing capabilities and fatigue life in bearings, gears, and any other bodies where two surfaces are in contact.
Bearing pressure for a cylinder-cylinder contact. In the case of a revolute joint or of a hinge joint, there is a contact between a male cylinder and a female cylinder. The complexity depends on the situation, and three cases are distinguished: the clearance is negligible:
The hoop stress equation for thin shells is also approximately valid for spherical vessels, including plant cells and bacteria in which the internal turgor pressure may reach several atmospheres. In practical engineering applications for cylinders (pipes and tubes), hoop stress is often re-arranged for pressure, and is called Barlow's formula.
Rolling contact between a cylinder and a plane. Particles moving through the contact area from right to left, being strained more and more until local sliding sets in. Rolling contact problems are dynamic problems in which the contacting bodies are continuously moving with respect to each other.
As an example, the stress state of a steel beam in compression differs from the stress state of a steel axle under torsion, even if both specimens are of the same material. In view of the stress tensor, which fully describes the stress state, this difference manifests in six degrees of freedom , because the stress tensor has six independent ...
The book covers various subjects, including bearing and shear stress, experimental stress analysis, stress concentrations, material behavior, and stress and strain measurement. It also features expanded tables and cases, improved notations and figures within the tables, consistent table and equation numbering, and verification of correction ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The shear modulus is one of several quantities for measuring the stiffness of materials. All of them arise in the generalized Hooke's law: . Young's modulus E describes the material's strain response to uniaxial stress in the direction of this stress (like pulling on the ends of a wire or putting a weight on top of a column, with the wire getting longer and the column losing height),