Search results
Results from the WOW.Com Content Network
In electromagnetism, an eddy current (also called Foucault's current) is a loop of electric current induced within conductors by a changing magnetic field in the conductor according to Faraday's law of induction or by the relative motion of a conductor in a magnetic field. Eddy currents flow in closed loops within conductors, in planes ...
In the traditional version of eddy current testing an alternating (AC) magnetic field is used to induce eddy currents inside the material to be investigated. If the material contains a crack or flaw which make the spatial distribution of the electrical conductivity nonuniform, the path of the eddy currents is perturbed and the impedance of the ...
In fluid dynamics, an eddy is the swirling of a fluid and the reverse current created when the fluid is in a turbulent flow regime. [2] The moving fluid creates a space devoid of downstream-flowing fluid on the downstream side of the object.
Eddy currents flow in closed loops in planes perpendicular to the magnetic field. They have useful applications in eddy current brakes and induction heating systems. However eddy currents induced in the metal magnetic cores of transformers and AC motors and generators are undesirable since they dissipate energy (called core losses) as heat in ...
These are called eddy currents. On the lefthand side nearest to the other wire (1) the eddy current is in the opposite direction to the main current (big pink arrow) in the wire, so it subtracts from the main current, reducing it. On the righthand side (2) the eddy current is in the same direction as the main current so it adds to it ...
A linear eddy current brake in a German ICE 3 high-speed train in action. An eddy current brake, also known as an induction brake, Faraday brake, electric brake or electric retarder, is a device used to slow or stop a moving object by generating eddy currents and thus dissipating its kinetic energy as heat.
(left) Eddy currents (I, red) within a solid iron transformer core. (right) Making the core out of thin laminations parallel to the field (B, green) with insulation between them (C) limits the eddy currents to circulate within each individual lamination, reducing the total current. In this diagram the field and currents are shown in one ...
The eddy-current in the part advancing toward the poles tends to repel those poles and to be repelled by them. It is obvious that any slits cut in the disk will tend to limit the flow of the eddy-currents, and by limiting them to increase the resistance of their possible paths in the metal, though it will not diminish the electromotive-force.