enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mixture model - Wikipedia

    en.wikipedia.org/wiki/Mixture_model

    A typical finite-dimensional mixture model is a hierarchical model consisting of the following components: . N random variables that are observed, each distributed according to a mixture of K components, with the components belonging to the same parametric family of distributions (e.g., all normal, all Zipfian, etc.) but with different parameters

  3. EM algorithm and GMM model - Wikipedia

    en.wikipedia.org/wiki/EM_Algorithm_And_GMM_Model

    The EM algorithm consists of two steps: the E-step and the M-step. Firstly, the model parameters and the () can be randomly initialized. In the E-step, the algorithm tries to guess the value of () based on the parameters, while in the M-step, the algorithm updates the value of the model parameters based on the guess of () of the E-step.

  4. Mixture of experts - Wikipedia

    en.wikipedia.org/wiki/Mixture_of_experts

    The mixture of experts, being similar to the gaussian mixture model, can also be trained by the expectation-maximization algorithm, just like gaussian mixture models. Specifically, during the expectation step, the "burden" for explaining each data point is assigned over the experts, and during the maximization step, the experts are trained to ...

  5. Model-based clustering - Wikipedia

    en.wikipedia.org/wiki/Model-based_clustering

    Model-based clustering [1] based on a statistical model for the data, usually a mixture model. This has several advantages, including a principled statistical basis for clustering, and ways to choose the number of clusters, to choose the best clustering model, to assess the uncertainty of the clustering, and to identify outliers that do not ...

  6. Multilevel model - Wikipedia

    en.wikipedia.org/wiki/Multilevel_model

    Multilevel models have been used in education research or geographical research, to estimate separately the variance between pupils within the same school, and the variance between schools. In psychological applications, the multiple levels are items in an instrument, individuals, and families.

  7. Mixed model - Wikipedia

    en.wikipedia.org/wiki/Mixed_model

    A mixed model, mixed-effects model or mixed error-component model is a statistical model containing both fixed effects and random effects. [ 1 ] [ 2 ] These models are useful in a wide variety of disciplines in the physical, biological and social sciences.

  8. Generalized linear mixed model - Wikipedia

    en.wikipedia.org/wiki/Generalized_linear_mixed_model

    In statistics, a generalized linear mixed model (GLMM) is an extension to the generalized linear model (GLM) in which the linear predictor contains random effects in addition to the usual fixed effects. [1] [2] [3] They also inherit from generalized linear models the idea of extending linear mixed models to non-normal data.

  9. Latent variable model - Wikipedia

    en.wikipedia.org/wiki/Latent_variable_model

    The Rasch model represents the simplest form of item response theory. Mixture models are central to latent profile analysis.. In factor analysis and latent trait analysis [note 1] the latent variables are treated as continuous normally distributed variables, and in latent profile analysis and latent class analysis as from a multinomial distribution. [7]

  1. Related searches mixture models in machine learning applications in education pdf notes grade

    what is a mixture modelmultivariate mixture model
    mixture model wikipediagaussian mixture model
    mixture model in statistics