Search results
Results from the WOW.Com Content Network
A sigmoid function is any mathematical function whose graph has a characteristic S-shaped or sigmoid curve. A common example of a sigmoid function is the logistic function, which is defined by the formula: [1] = + = + = ().
In other words, a volume form gives rise to a measure with respect to which functions can be integrated by the appropriate Lebesgue integral. The absolute value of a volume form is a volume element, which is also known variously as a twisted volume form or pseudo-volume form. It also defines a measure, but exists on any differentiable manifold ...
Area#Area formulas – Size of a two-dimensional surface; Perimeter#Formulas – Path that surrounds an area; List of second moments of area; List of surface-area-to-volume ratios – Surface area per unit volume; List of surface area formulas – Measure of a two-dimensional surface; List of trigonometric identities
Table: Create a table the headers of which specify what the units are, then a table row, then this template, with |cells=y, as the content of the table row (the template creates cells, it doesn't go in one). If a conversion is required, it could be provided in an additional cell, in a column for that unit, e.g. with:
The generation of a bicylinder Calculating the volume of a bicylinder. A bicylinder generated by two cylinders with radius r has the volume =, and the surface area [1] [6] =.. The upper half of a bicylinder is the square case of a domical vault, a dome-shaped solid based on any convex polygon whose cross-sections are similar copies of the polygon, and analogous formulas calculating the volume ...
One of the most common ways to calculate volume of a standing tree or of a log is by using the Doyle log rule. This formula uses the small end diameter of a log (D) (in inches) along with the log length (L) (in feet) to estimate the volume of a log. The Doyle log rule on average under estimates the volume of a log. See formula below:
It is an odd function, as (−n) 3 = −(n 3). The volume of a geometric cube is the cube of its side length, giving rise to the name. The inverse operation that consists of finding a number whose cube is n is called extracting the cube root of n. It determines the side of the cube of a given volume. It is also n raised to the one-third power.
In physics, a characteristic length is an important dimension that defines the scale of a physical system. Often, such a length is used as an input to a formula in order to predict some characteristics of the system, and it is usually required by the construction of a dimensionless quantity, in the general framework of dimensional analysis and in particular applications such as fluid mechanics.