Search results
Results from the WOW.Com Content Network
Thermal diffusivity is a contrasting measure to thermal effusivity. [6] [7] In a substance with high thermal diffusivity, heat moves rapidly through it because the substance conducts heat quickly relative to its volumetric heat capacity or 'thermal bulk'. Thermal diffusivity is often measured with the flash method.
The higher the thermal diffusivity of the sample, the faster the energy reaches the backside. A laser flash apparatus (LFA) to measure thermal diffusivity over a broad temperature range, is shown on the right hand side. In a one-dimensional, adiabatic case the thermal diffusivity is calculated from this temperature rise as follows:
1781 - Joseph Priestley attempts to measure the ability of different gases to conduct heat using the heated wire experiment. 1931 - Sven Pyk and Bertil Stalhane proposed the first “transient” hot wire method for the measurement of thermal conductivity of solids and powders. Unlike previous methods, the one devised by Pyk and Stalhane used ...
The transient hot wire method (THW) is a very popular, accurate and precise technique to measure the thermal conductivity of gases, liquids, [3] solids, [4] nanofluids [5] and refrigerants [6] in a wide temperature and pressure range. The technique is based on recording the transient temperature rise of a thin vertical metal wire with infinite ...
For most gases over a wide range of temperature and pressure, Pr is approximately constant. Therefore, it can be used to determine the thermal conductivity of gases at high temperatures, where it is difficult to measure experimentally due to the formation of convection currents. [1] Typical values for Pr are: 0.003 for molten potassium at 975 K [1]
D is the mass diffusivity (m 2 /s). μ is the dynamic viscosity of the fluid (Pa·s = N·s/m 2 = kg/m·s) ρ is the density of the fluid (kg/m 3) Pe is the Peclet Number; Re is the Reynolds Number. The heat transfer analog of the Schmidt number is the Prandtl number (Pr). The ratio of thermal diffusivity to mass diffusivity is the Lewis number ...
The kinetic theory of gases deals not only with gases in thermodynamic equilibrium, but also very importantly with gases not in thermodynamic equilibrium. This means using Kinetic Theory to consider what are known as "transport properties", such as viscosity, thermal conductivity, mass diffusivity and thermal diffusion.
α is the thermal diffusivity, D is the mass diffusivity, λ is the thermal conductivity, ρ is the density, D im is the mixture-averaged diffusion coefficient, c p is the specific heat capacity at constant pressure. In the field of fluid mechanics, many sources define the Lewis number to be the inverse of the above definition. [3] [4]